Tìm cặp số nguyên x,y thỏa mãn
x2 -xy -6x+ 5y +8=0
tìm cặp số nguyên x y thỏa mãn x mũ 2+xy bằng 6x -5y -8
Để tìm cặp số nguyên (x, y) thỏa mãn phương trình x^2 + xy = 6x - 5y - 8, chúng ta có thể sử dụng phương pháp giải đồng dư.
Đầu tiên, ta sẽ chuyển phương trình về dạng tương đương: x^2 + xy - 6x + 5y + 8 = 0.
Tiếp theo, ta sẽ tìm các giá trị của x sao cho đa thức trên là một đa thức bậc hai trong y. Để làm điều này, ta sẽ sử dụng công thức giải đa thức bậc hai:
y = (-b ± √(b^2 - 4ac))/(2a)
Ở đây, a = 1, b = x - 6 và c = x^2 - 5x - 8. Thay các giá trị này vào công thức, ta có:
y = (-(x - 6) ± √((x - 6)^2 - 4(x^2 - 5x - 8)))/(2(1))
y = (-x + 6 ± √(x^2 - 12x + 36 - 4x^2 + 20x + 32))/(2)
y = (-x + 6 ± √(-3x^2 + 8x + 68))/(2)
Bây giờ, ta sẽ kiểm tra các giá trị của x từ -100 đến 100 (hoặc bất kỳ phạm vi nào khác mà bạn muốn) và tìm các giá trị tương ứng của y để xem có cặp số nguyên (x, y) nào thỏa mãn phương trình ban đầu không.
Chú ý rằng trong phương trình ban đầu, ta chỉ quan tâm đến các giá trị nguyên của x và y. Do đó, chúng ta có thể sử dụng một vòng lặp để kiểm tra các giá trị này.
Dưới đây là một ví dụ về mã Python để tìm các cặp số nguyên (x, y) thỏa mãn phương trình:
for x in range(-100, 101): discriminant = -3*x**2 + 8*x + 68 if discriminant >= 0 and discriminant % 4 == 0: y1 = (-x + 6 + discriminant**0.5) / 2 y2 = (-x + 6 - discriminant**0.5) / 2 if y1.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y1)})") if y2.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y2)})")Kết quả sẽ hiển thị các cặp số nguyên (x, y) thỏa mãn phương trình ban đầu.
Tìm cặp số nguyên (x;y) thỏa mãn pt x2 - xy - 5y -24 = 0
Theo đề suy ra: \(y=\frac{x^2-24}{x+5}=\frac{x^2-25+1}{x+5}=\frac{\left(x+5\right)\left(x-5\right)+1}{x+5}=x-5+\frac{1}{x+5}\)
Để \(x,y\inℤ\)thì \(\frac{1}{x+5}\inℤ\Leftrightarrow1⋮\left(x+5\right)\Leftrightarrow x+5=\pm1\Leftrightarrow\orbr{\begin{cases}x=-4\Rightarrow y=-8\\x=-6\Rightarrow y=-12\end{cases}}\)
Vậy pt có 2 nghiệm là (-4;-8) và (-6;-12)
Cái chỗ ngoặc vuông thì cái đó là “hoặc” mà . Ngoặc kép mới là “và” mà :(
thì nó đúng là "hoặc" mà bạn, x không thể mang 2 giá trị cùng lúc nên ko lấy dấu "và" đâu !
Tìm cặp số nguyên (x; y) thỏa mãn:
xy - x +5y -7 = 0
=> xy - x + 5y - 5 - 2 = 0
=> x(y-1) + 5 ( y - 1 ) = 2
=> ( x +5 )( y - 1 ) = 2
Ta có 2 = 1.2 = 2.1 = -1.-2 = -2.-1
(+) x + 5 = 1 và y - 1 = 2
=> x = -4 ; y = 3
.......................
Tìm các cặp số nguyên dương (x; y) thỏa mãn 6x + 5y +18 = 2xy
\(\Leftrightarrow2xy-6x-5y=18\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Phương trình ước số cơ bản
Tìm các cặp số nguyên dương (x;y) thỏa mãn: 6x+5y+18=2xy
Ta có: \(6x+5y+18=2xy\)
\(\Leftrightarrow6x+5y-2xy=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)
\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)
\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)
\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)
Dễ rồi
Tìm cặp số nguyên (x,y) thỏa mãn đẳng thức
a) xy+3x-2y-7=0
b)5y-2x^2-2y^2+2=0
a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)
Tìm các cặp số nguyên x;y thỏa mãn :
xy - x = 7 - 5y
xy - x = 7 - 5y
=> xy - x + 5y = 7
=> ( xy + x ) + 5y = 7
=> x ( y + 1 ) + 5 ( y + 1 ) = 7
=> y + 1 . ( x + 5 ) = 7 = 1 . 7 = 7 . 1 = ( - 1 ) . ( - 7 ) = ( - 7 ) . ( - 1 )
TH1 :
y + 1 = 1 và x + 5 = 7
=> y = 2 và x = 2
TH2 :
y + 1 = 7 và x + 5 = 1
=> y = 6 và x = - 4
TH3 :
y + 1 = ( - 1 ) và x + 5 = ( - 7 )
=> y = - 2 và x = - 12
TH4 :
y + 1 = ( - 7 ) và x + 5 = ( - 1 )
=> y = - 8 và x = - 6
Vậy : ...
Tìm tất cả các cặp số nguyên dương (xy) thỏa mãn x2+y2-2(x+y) = xy
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Tiếp tục phần tiếp theo
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)
⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài
tìm các cặp sood nguyên (x,y) thỏa mãn
a, y(x-2)+3x-6=2
b, xy+3x-zy-7=0
c, xy - x + 5y - 7 = 0
Tìm các cặp số nguyên x;y thỏa mãn:
xy-5x-5y=0
Giúp mk nha:):)