Cho \(\Delta ABC\) vuông tại A, đường cao AH. Gọi D và E lần lượt là các điểm đối xứng với H qua AB, AC.
a, C/minh: \(DE^2=4BD.CE\)
b, Biết AB = 3cm. AC = 4cm. Tính DE và \(S_{DHE}\)
Cho \(\Delta ABC\) vuông tại A, đường cao AH. Gọi D và E lần lượt là các điểm đối xứng với H qua AB, AC.
a, C/minh: \(DE^2=4BD.CE\)
b, Biết AB = 3cm. AC = 4cm. Tính DE và \(S_{DHE}\)
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D là điểm đối xứng của H qua AB, E là điểm đối xứng của H qua AC
a) Chứng minh BD // CE
b) Chứng minh tam giác ADB đồng dạng với tam giác AEC
c) Biết AB = 3cm, AC = 4cm. Tính DE và diện tích tam giác DHE
d) Chứng minh BD . CE = DE^2 / 4
a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút
=> AD = AH và AH = AE
Xét tam giác BDA và tam giác BHA có :
BA chung
BD = BH (theo tính chất nêu trên) => tam giác BDA = tam giác BHA (1)
AD = AH
Xét tam giác AHC và tam giác AEC có :
AC chung
AH = AE => tam giác AHC = tam giác AEC (2)
CH = CE (như tính chất nêu trên)
Từ (1)
=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)
Từ (2) ta cũng có :
\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)
Ta lại có :
\(\widehat{HAB}+\widehat{HAC}=90^0\)
\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)
=> D , A , E thẳng hàng
VÀ AD vuông góc với BD
AE vuông góc với CE
MÀ AD , AE thuộc DE
=> BD // CE
b) Ta có :
\(\widehat{BAD}+\widehat{CAE}=90^0\)
\(\widehat{BAD}+\widehat{DBA}=90^0\)
=> \(\widehat{DBA}=\widehat{CAE}\)
Nhờ vậy , ta xét tam giác DBA và tam giác EAC có :
\(\widehat{BAD}=\widehat{ACE}\)
Xét tam giác DBA và tam giác EAC có :
\(\frac{\widehat{DBA}}{\widehat{CAE}}=1\)
\(\frac{\widehat{BAD}}{\widehat{ACE}}=1\)
=> Tam giác DBA đồng dạng với tam giác EAC (theo trường hợp đặc biệt góc - góc)
cho tam giác ABC vuông tại A, đường cao AH. gọi D,E theo thứ tự là các điểm đối xứng của H qua các cạnh AB,AC.
a, chứng minh A,E, D thẳng hàng và BCED là hình thang.
b, chứng minh BD.CE=\(\frac{DE^2}{4}\)
c, cho biết AB= 3cm, AC=4cm . tính DE và diện tích tam giác DHE
Cậu tự vẽ hình nhá
a) Do D đối xứng với H qua đoạn AB nên tam giác ADH cân tại A
Tam giác ADH có AB là đường cao đồng thời là phân giác
=> góc DAB = góc HAB
Tương tự với tam giác AHE => góc HAC = góc EAC
Ta có :
góc DAE = (góc DAH) + (góc HAE) = 2.(góc BAH) + 2.(góc HAC) = 2.(góc BAH + góc HAC) = 2.90 = 180
=> D,A,E thẳng hàng
Nhận thấy
Tam giác AHC đối xứng với tam giác AEC qua đoạn thẳng AC => góc AHC = góc AEC = 900 (1)
Tương tự , ta cũng có : góc BHA = góc BDA = 900 (2)
Từ (1) và (2) => BD // EC (do 2 góc trong cùng phía bù nhau)
b) Ta có : tam giác BHA đồng dạng với tam giác AHC
Suy ra tỷ lệ \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=BH.HC\)
Mà BH = BD , HC = CE
=> \(AH^2=BD.CE\)
<=> \(4AH^2=4BD.CE\)
<=> \(\left(2AH\right)^2=4BD.CE\) (Do AD = AH = AE)
<=> \(DE^2=4BD.CE\)
cho tam giác ABC vuông tại A, có AB = 3cm, AC= 4cm , AH là đường cao . Điểm D ,E lần lượt đối xứng với H qua AB, AC . TÍNH DE?
= 5 cm nhá bạn yêu dấu ơi, còn cách làm thì để mình tìm cách giải thích cho, cái này mình hơi tệ , thông cảm, mình tìm cách giải thích cho bạn sau
Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là điểm đối xứng của H qua AB và AC. Khi đó độ dài đoạn DE bằng: ........................
+) Ta có: AB vừa là đường cao vừa là đường trung tuyến
=> tam giác ADH cân tại A
=> AH = AD (1)
AC vừa là đường cao vừa là đường trung tuyến
=> tam giác AEH cân tại A
=> AH = AE (2)
Từ (1) và (2) => AH = AD = AE
+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
AH.BC = AB.AC
=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)
+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm
Vậy DE = 4,8cm
Cho ∆ABC vuông tại A, đường cao AH. Biết HB=4cm, CH=9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a, Tính DE
b, Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN=1/2BC
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=4\cdot9=36\)
hay AH=6(cm)
Xét tứ giác ADHE có
\(\widehat{EAD}=90^0\)(gt)
\(\widehat{AEH}=90^0\)(gt)
\(\widehat{ADH}=90^0\)(gt)
Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=DE(hai đường chéo của hình chữ nhật ADHE)
mà AH=6cm(cmt)
nên DE=6cm
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D và E theo thứ tự là các điểm đối xứng của H qua các cạnh AB và AC
à) chứng tỏ BD//CE
B)Chứng tỏ tam giác ADB đồng dạng vs tam giác AEC Chứng tỏ BD.CE=\(\frac{DE^2}{4}\)
d) biết AB= 3cm, ÁC= 4cm. Tính DE và diện tích tam giác DHE
Bài: Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K lần lượt là hình chiếu của H trên AB, AC.
a)Tính S tam giác AIK biết AB=3cm, AC=5cm
b) Gọi E đối xứng với H qua AB. Đường thẳng vuông góc với BC tại B cắt AE tại M. Chứng minh IK, AH, CM đồng quy
Giúp mình vs ạ :)
a) -Sửa đề: \(AC=4cm\) (sửa lại cho số được đẹp)
-△ABC vuông tại A có: \(BC^2=AB^2+AC^2\).
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△ACH và △BCA có: \(\widehat{AHC}=\widehat{BAC};\widehat{BCA}\) là góc chung.
\(\Rightarrow\)△ACH∼△BCA (g-g)
\(\Rightarrow\dfrac{CH}{CA}=\dfrac{AC}{BC}\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\).
△ABC có: IH//BC (cùng vuông góc AB).
\(\Rightarrow\dfrac{AI}{AB}=\dfrac{CH}{CB}\Rightarrow AI=\dfrac{AB.CH}{CB}=\dfrac{3.3,2}{5}=1,92\left(cm\right)\).
-Tứ giác AIHK có: \(\widehat{IAK}=\widehat{AIH}=\widehat{AKH}=90^0\).
\(\Rightarrow\)AIHK là hình chữ nhật \(\Rightarrow\widehat{AKI}=\widehat{CAH}\).
\(\widehat{CAH}=90^0-\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{AKI}=\widehat{ABC}\).
-△AIK và △ACB có: \(\widehat{AKI}=\widehat{ABC};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AIK∼△ACB (g-g).
\(\Rightarrow\dfrac{S_{AIK}}{S_{ACB}}=\left(\dfrac{AI}{AC}\right)^2=\left(\dfrac{1,92}{4}\right)^2=0,2304\)
\(\Rightarrow S_{AIK}=0,2304.S_{ABC}=0,2304.\dfrac{1}{2}.3.4=1,3824\left(cm^2\right)\)
b) *CM cắt AH tại D, BM cắt AC tại F.
AH⊥BC tại H, BM⊥BC tại B \(\Rightarrow\)AH//BM.
E đối xứng với H qua AB \(\Rightarrow\widehat{HAB}=\widehat{BAM}\)mà \(\widehat{HAB}=\widehat{ABM}\).
\(\Rightarrow\)\(\widehat{ABM}=\widehat{BAM}\) \(\Rightarrow\)△ABM cân tại M \(\Rightarrow AM=BM\)
\(\widehat{ABM}=\widehat{BAM}\Rightarrow\widehat{MAF}=\widehat{MFA}\) \(\Rightarrow\)△AMF cân tại M \(\Rightarrow AM=FM\).
\(\Rightarrow BM=FM\) nên M là trung điểm BC.
-△BCM có: DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{DC}{MC}\).
-△FCM có: AD//FM \(\Rightarrow\dfrac{DA}{FM}=\dfrac{DC}{MC}=\dfrac{DH}{BM}\Rightarrow DA=DH\)
\(\Rightarrow\)D là trung điểm AH mà AIHK là hình chữ nhật.
\(\Rightarrow\)D là trung điểm IK.
-Vậy IK, AH, CM đồng quy tại D.
Bài 9: cho ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC.
a) Chứng minh: D đối xứng với E qua A
b) DHE là hình gì ? vì sao?
c) Tứ giác BDEC là hình gì ? vì sao ?
d) Chứng minh : BC=BD+CE