Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LGBT Cũng Là Con Người
Xem chi tiết
Hoàng Đình Đại
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2022 lúc 9:24

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

Lê Đức Anh
Xem chi tiết
tth_new
30 tháng 8 2019 lúc 9:58

ĐK: \(x>-1\)

\(PT\Leftrightarrow a^2-\left(x+1\right)a+2x-2=0\)

\(\Leftrightarrow\left(2-a\right)\left(x-a-1\right)=0\)

.Làm nốt. 

~Ko chắc~

tth_new
30 tháng 8 2019 lúc 9:59

À quên: Đặt \(a=\sqrt{x^2-2x+3}\ge\sqrt{2}\)

bình otaku
30 tháng 8 2019 lúc 10:22

(x+1)\(\sqrt{x^2-2x+3}\)=\(x^2\)+1

(x+1)\(\sqrt{\left(x-1\right)^2+2}\)-(x+1)(x-1)=0

(x+1)(x-1-x+1+\(\sqrt{2}\))=0

(x+1)\(\sqrt{2}\)=0

<=>x+1=0

<=>x=-1

Diệp Nguyễn Thị Huyền
Xem chi tiết
Agami Raito
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 6 2019 lúc 23:17

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a>0\\\sqrt{x-2}=b\ge0\\\sqrt{x+3}=c>0\end{matrix}\right.\)

\(\Leftrightarrow ab+c=b+ac\)

\(\Leftrightarrow a\left(b-c\right)-\left(b-c\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(b-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=c\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\-2=3\left(vn\right)\end{matrix}\right.\)

origami money vietnam
22 tháng 6 2019 lúc 6:04

Hỏi đáp Toán

Hỏi đáp Toán

Nguyễn Quốc Gia Huy
Xem chi tiết
Ayakashi
Xem chi tiết
Phạm Cao Sơn
Xem chi tiết

ĐK  \(x\ge0\)

Đặt \(x=a,x+1=b\)

\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)

<=> 4a3b+6a2b2+4ab3=0

<=> ab(2a2+3ab+2b2)=0

=>ab=0 (vì 2a2+3ab+2b2>0)

=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy.............................