Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Mai Aquarius
Xem chi tiết
Vũ Đặng Nhật Linh
Xem chi tiết
Xyz OLM
9 tháng 11 2019 lúc 17:26

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

Khách vãng lai đã xóa
Xyz OLM
9 tháng 11 2019 lúc 17:53

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

Khách vãng lai đã xóa
Vũ Đặng Nhật Linh
12 tháng 11 2019 lúc 21:08

Thanks !!! 

Khách vãng lai đã xóa
Namikaze Minato
Xem chi tiết
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
kudo shinichi
27 tháng 7 2018 lúc 21:38

Ta có: 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

....................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

                                           \(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

                                            \(=2-\frac{1}{n}\)

                                                      đpcm

Tham khảo nhé~

kagamine rin len
Xem chi tiết
Đoàn Thế Nhật
Xem chi tiết
Nguyễn Duy Khánh
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 15:33

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

Thanh Tùng DZ
1 tháng 6 2018 lúc 15:36

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

Thanh Tùng DZ
1 tháng 6 2018 lúc 15:38

3.

Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)

Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)

Nguyễn Văn Du
Xem chi tiết
Tran Le Khanh Linh
19 tháng 4 2020 lúc 12:09

Ta có A>1

\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

=> 1<A<2 => A không là số tự nhiên

Khách vãng lai đã xóa
Nguyễn Duy Long
Xem chi tiết
LIVERPOOL
27 tháng 8 2017 lúc 9:45

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

khoimzx
Xem chi tiết
Akai Haruma
31 tháng 10 2020 lúc 13:59

Lời giải:

Chứng minh vế thứ nhất:

Với mọi số tự nhiên $i< n$ ta có: $\frac{1}{n+i}> \frac{1}{n+n}$. Thay $i=1,2,...$ ta có:

$\frac{1}{n+1}>\frac{1}{n+n}$

$\frac{1}{n+2}>\frac{1}{n+n}$

.....

Do đó: $\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{n+n}+\frac{1}{n+n}+...+\frac{1}{n+n}=\frac{n}{n+n}=\frac{1}{2}$

(đpcm)

Vế thứ hai có vẻ không đúng lắm, vì $n$ càng tăng thì giá trị của tổng càng tăng theo nên mình nghĩ khi $n$ tiến tới vô cực thì tổng trên cũng vượt khỏi $\frac{3}{4}$