Cho tam giác ABC,AD là phân giác góc A. Đường trung trực của AD cắt BC tại K
a)CMinh AK2=KB=KC
b)Tính KD biết BD=2cm,DC=3cm
Cho tam giác ABC (AB<AC), đường phân giác AD. Đường trung trực của AD cắt BC tại K. Cho BD=2cm, DC = 4cm. Tính KD
Cho tam giác ABC ( AB < AC ) đường phân giác AD. Đường trung trực của AD cắt BC ở K.
a) cm tam giac KAB đồng dạng với tam giác KCA
b) tính KD biết BD =2cm , DC = 4cm
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Kẻ DH vuông BC tại H. Cminh
a)tam giác BAD=tam giác BHD
b)BD là đường trung trực của AH
c)Kẻ DH cắt AB tại E. Cminh BC=BE
d)Cminh BD vuông EC
e)Cminh AD<DC
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)
b) Ta có: ΔBAD=ΔBHD(cmt)
nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)
Ta có: BA=BH(cmt)
nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DH(cmt)
nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)
c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AE=HC(Hai cạnh tương ứng)
Ta có: BA+AE=BE(A nằm giữa B và E)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(cmt)
và AE=HC(cmt)
nên BE=BC(đpcm)
d) Ta có: ΔADE=ΔHDC(cmt)
nên DE=DC(Hai cạnh tương ứng)
Ta có: BE=BC(cmt)
nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DE=DC(cmt)
nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BD là đường trung trực của EC
hay BD\(\perp\)EC(đpcm)
e) Ta có: DA=DH(cmt)
mà DH<DC(ΔDHC vuông tại H)
nên DA<DC(đpcm)
a) Xét tam giác BAD và tam giác BHD có:
BD chung (gt)
ABD= HBD (gt)
A = H =90o (gt)
=> BAD= BHD(c.h-g.n)
Cho ΔABC có AB<AC, AD là phân giác góc A. Đường trung trực của AD cắt đường thẳng BC tại K
a)Cminh KA\(^2\)=KB.KC
b)Tính KD, biết BD=2cm,DC=3cm
Lời giải:
a)
Vì $K$ nằm trên đường trung trực của $AD$ nên $KA=KD$
\(\Rightarrow \triangle KAD\) cân tại $K$
\(\Rightarrow \widehat{KDA}=\widehat{KAD}\)
Mà: \(\widehat{BAD}=\widehat{CAD}\) (do $AD$ là tia phân giác góc A)
\(\Rightarrow \widehat{KDA}+\widehat{BAD}=\widehat{KAD}+\widehat{CAD}\)
\(\Leftrightarrow \widehat{ABK}=\widehat{CAK}\)
Xét tam giác $ABK$ và $CAK$ có:
\(\left\{\begin{matrix} \widehat{K}-\text{chung}\\ \widehat{ABK}=\widehat{CAK}(cmt)\end{matrix}\right.\Rightarrow \triangle ABK\sim \triangle CAK(g.g)\)
\(\Rightarrow \frac{AK}{CK}=\frac{BK}{AK}\Rightarrow KA^2=KB.KC\) (đpcm)
b)
Theo kết quả phần a:
\(KA^2=KB.KC\). Mà $KA=KD$ nên:
\(KD^2=KB.KC\)
\(\Leftrightarrow (KB+BD)^2=KB(KB+BC)\)
\(\Leftrightarrow (KB+2)^2=KB(KB+5)\)
\(\Leftrightarrow KB=4\) (cm)
Do đó:
\(KD=KB+BD=4+2=6\) (cm)
Vậy.........
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AB}{AC}=\dfrac{1}{2}\)
Ta có: BD+CD=BC(D nằm giữa B và C)
nên BC=2+4=6(cm)Xét ΔABC có
AF là đường phân giác góc ngoài ứng với cạnh BC(gt)
nên \(\dfrac{FB}{FC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài)
\(\Leftrightarrow\dfrac{FC}{FB}=\dfrac{AC}{AB}=2\)
\(\Leftrightarrow\dfrac{FC-FB}{FB}=\dfrac{AC-AB}{AB}\)
\(\Leftrightarrow\dfrac{BC}{FB}=1\)
hay FB=6(cm)
Ta có: FB+BD=FD(B nằm giữa F và D)
nên FD=6+2=8(cm)
Vậy: FD=8cm
Cho tam giác ABC vuông tại A , Tia phân giác của góc ABC cắt AC tại điểm D . Từ D kẻ vuông góc với BC tại điểm H
a, chứng minh AD = DH
b, so sánh độ dài AD và DC
c, gọi K là giao điểm của AB và DH
BD là đường trung trực của đoạn thẳng KC
Giải giúp mình phần c với ạ 28 tháng tư cần rồi ạ
Trong Tam giác ABC , đường phân giác AD chia cạnh đối diện thành các đoạn thẳng BD = 2cm, DC = 4cm. Đường trung trực của AD cắt đườngthẳng BC tại K. Tính độ dài KD.
cho tam giác abc vuông tại b, phân giác ad (d thuộc bc). Qua d kẻ đường thẳng vuông góc với ac tại f.
a, tính bc biết ab=3cm,ac=5cm
b, CM:tam giác bad= tam giác fad
c, CM: ad là trung trực của bf; bd<dc