Tìm n \(\in\) N thỏa mãn:
\(2^2.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)
<lời giải đầy đủ>
Số tự nhiên n thỏa mãn : 2^2.3^2n .\(\left(\frac{2}{3}\right)^n\) .2^n = 82944
số tự nhiên n thỏa mãn
\(2^n.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)
a) S hình thoi là:
(19 x 12) : 2 = 114(cm2)
b) S hình thoi là;
(30 x 7) : 2 = 105(cm2)
\(2^n.3^{2n}.\left(\frac{2}{3}\right)^n.2^n=82944\)(n\(\in\)N)
\(2^n.2^n.\left(\frac{2}{3}\right)^n.\left(3^2\right)^n=82944\)
\(\left(2.2.\frac{2}{3}.9\right)^n=82944\)
\(24^n=82944\)
Tớ làm đến đây thôi khó lắm bạn xem lại đề đi
Số tự nhiên n thỏa mãn:22.32n.\(\left(\frac{2}{3}\right)^n\).2n=82944 là..............(kết quả thôi)
\(2^2.3^{2n}.\left(\frac{2}{3}\right)^n.2n=82944\)
Không được bỏ bước!
\(2^2\cdot3^{2n}\cdot\left(\frac{2}{3}\right)^n\cdot2^n=82944\)
\(2^2\cdot\left(3^2\right)^n\cdot\left(\frac{2^n}{3^n}\right)\cdot2^n=82944\)
\(2^2\cdot9^n\cdot\frac{2^n}{3^n}\cdot2^n=82944\)
\(2^2\cdot\frac{9^n\cdot2^n}{3^n}\cdot2^n=82944\)
\(2^2\cdot\frac{18^n}{3^n}\cdot2^n=82944\)
\(4\cdot6^n\cdot2^n=82944\)
\(6^n\cdot2^n=82944:4\)
\(12^n=20736\)
\(12^n=12^4\)
Vậy n=4
Tìm số tự nhiên n thỏa mãn:\(3.3^{n-1}\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)
\(3.3^{n-1}.\left(6.3^{n+2}+3\right)-2.3^n\left(3^{n+3}-1\right)=405\)
\(\Rightarrow3.3^{n-1}.6.3^{n+2}+3.3.3^{n-1}-2.3^n.3^{n+3}+1.2.3^n=405\)
\(\Rightarrow3^{1+n-1}.6.3^n.3^2+3^{1+1+n-1}-2.3^n.3^n.3^3+3^n.2=405\)
\(\Rightarrow3^n.\left(6.3^2\right).3^n+3^{n+1}-\left(2.3^3\right).3^{n+n}+3^n.2=405\)
\(\Rightarrow\left(3^n.3^n\right).54+3^{n+1}-54.3^{2n}+3^n.2=405\)
\(\Rightarrow3^{2n}.54+3^{n+1}-3^{2n}.54+3^n.2=405\Rightarrow3^{n+1}+3^n.2=405\)
\(\Rightarrow3^n.3+3^n.2=405\Rightarrow3^n.5=405\Rightarrow3^n=81=3^4\Rightarrow n=4\)
Chứng minh các mệnh đề sau:
\(a,1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) \(\forall n\in N\) *
\(b,1.2+2.3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\) \(\forall n\in N\) *
Rút gọn C = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
Rút gọn \(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
Ta có:
\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)
\(=1-\frac{2n+1}{\left(n+1\right)^2}\)
Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)
tìm n bk: 2n.32n.(2/3)n.2n=82944