Tìm m để đồ thị hàm số y=-2x2 vvavàvà y= - ( 2m +1)+m tiếp xúc vs nhau khi đó tìm tọa độ tiếp điểm
cho hàm số y=1/4x^2 có đồ thị là (p) và hàm số y=x+m có đồ thị là (d)
a) Vẽ đồ thị (p) của hàm số y=1/4x^2
b) Tìm giá trị của m để (d) tiếp xúc với (p). Tìm tọa độ tiếp điểm
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)
Cho hàm số y = x 3 - 2 x 2 + ( m - 1 ) x + 2 m có đồ thị là C m . Tìm m để tiếp tuyến của đồ thị C m tại điểm có hoành độ x = 1 song song với đường thẳng (d): y = 3x +100.
A. m = 2
B. m = 4
C. m = 5
D. Không tồn tại m
Biết đồ thị ( C ) : y = x 3 - 2 x 2 và đường thẳng (d): x+y=0 tiếp xúc với nhau tại M. Tìm tọa độ M.
cho hàm số y=\(x^2\) (P) và y=2(m-3)x+m-9 (d), m là tham số, m∈R
a)với giá trị nào của m thì (d) là hàm số bậc nhất đồng biến
b)tìm m để đồ thị(P) và (d) tiếp xúc nhau, tìm tọa độ tiếp điểm.
c)xác định m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ âm.
a: Để hàm số đồng biến thì 2m-6>0
hay m>3
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-6\right)x-m+9=0\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)
\(=4m^2-24m+36+4m-36\)
=4m2-20m
Để (P) tiếp xúc với (d) thì 4m(m-5)=0
=>m=0 hoặc m=5
Cho hàm số ( P ) y=x2 và ( d ) y= 2x-m+1 Tìm m để ( P ) và ( d ) a) Tiếp xúc nhau tìm tọa độ tiếp điểm b) Cắt nhau
PTHĐGĐ là:
x^2-2x+m-1=0
Δ=(-2)^2-4(m-1)=4-4m+4=-4m+8
a: Để (P) và (d) tiếp xúc thì -4m+8=0
=>m=2
=>x^2-2x+1=0
=>x=1
=>y=1
b: Để (P) cắt (d) thì -4m+8>0
=>m<2
Cho \(\left(P\right):y=2\left(m+1\right)x^2\)và \(\left(d\right):y=2x-3\)
1, Xác định m để (d) và (P) tiếp xúc nhau .
2, Tìm tọa độ của tiếp điểm . Vẽ đồ thị hàm số trong trường hợp đó .
Cho 2 hàm số y=2x-1+2m (d) và y=-x-2m (d') (m là tham số)
a, Khi m=1, tìm tọa độ giao điểm của (d) và (d')
b, Tìm m để đồ thị (d) và (d') cắt nhau tại 1 điểm có hoành độ dương
a: Khi m=1 thì (d): y=2x-1+2=2x+1
Khi m=1 thì (d'): y=-x-2
Phương trình hoành độ giao điểm là:
2x+1=-x-2
=>3x=-3
hay x=-1
=>y=-2+1=-1
b: Phương trình hoành độ giao điểm là:
\(2x-1+2m=-x-2m\)
=>3x-1+4m=0
=>3x=1-4m
=>x=(1-4m)/3
Để x dương thì 1-4m>0
hay m<1/4
Tìm m để đường thẳng (d): \(y=mx+4\) tiếp xúc với đồ thị hàm số (P): \(\dfrac{-x^2}{4}\) .
(hai đồ thị hàm số tiếp xúc nhau là hai đồ thị chỉ có 1 điểm chung)
Giúp mk làm bài này với
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-4=0\)
\(\Leftrightarrow x^2+4mx+16=0\)
\(\Delta=\left(4m\right)^2-4\cdot1\cdot16=16m^2-64\)
Để hai đồ thị tiếp xúc với nhau thì 16m2-64=0
=>m=2 hoặc m=-2
Cho hàm số \(y=\left(m-1\right)x+2m-3\)(với m là tham số) có đồ thị là hàm số. Tìm m để đường thẳng (d) tiếp xúc với đường tròn (O) (với O là gốc tọa độ Oxy) bán kính 2cm