Cho B=1/1+1/2+1/3+...+1/96 và B= phân số A/B.Chứng minh A chia hết cho 97
a)Cho A=(1/1+1/2+1/3+...+1/98).2.3.4...98
Chứng minh rằng A chia hết cho 99.
b)Cho B =1/1+1/2+1/3+...+1/96 và B bằng phân số a/b.Chứng minh rằng a chia hết cho 97.
Ta thấy
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)
=> A là số dương
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99
b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)
Ta sẽ có:
B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)
=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)
Bạn CMTT như câu a là cũng ra
Chúc bạn học tốt
Cảm ơn bạn.Bạn cho mk kb vs bạn nhé.
Cho a = (1/1+1/2+1/3+...+1/98).2.3.4...98
Chứng minh A chia hết cho 99Cho B =1/1+1/2+1/3+...+1/96 và B bằng phân số a/b . chứng minh rằng A chia hết cho 97
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
Tổng 1/1 + 1/2 + 1/3 +.....+ 1/96 bằng phân số a/b. Chứng minh a chia hết cho 97
Ta thấy
A=(1+12+13+...+198)2.3.4....98A=(1+12+13+...+198)2.3.4....98
A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97(phá ngoặc)
=> A là số dương
A=(1+12+13+...+198)2.3.4....98A=(1+12+13+...+198)2.3.4....98
Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99
b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)
Ta sẽ có:
B = a2.3.....96=11+12+13+14+...+196a2.3.....96=11+12+13+14+...+196
=>a=(1+12+13+...+196)2.3.4....96a=(1+12+13+...+196)2.3.4....96
Bạn CMTT như câu a là cũng ra
Chúc bạn học tốt
Cho \(B=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\)và B bằng phân số \(\frac{a}{b}\). Chứng minh rằng A chia hết cho 97.
mk gợi ý thui nhé :
cộng 96 phân số theo từng cặp:
a/b = (1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
...........................v.v
tự làm nhé
Tính giá trị biểu thức:
A=1×3+2×4+...+98×100
B=1×2×3+2×3×4+...+48×49×50
Bài 2:
Chứng minh:1/5+1/7+...+1/101 không là số tự nhiên
Bài 3:
A=(1+1/2+1/3+...+1/98)×2×3×...×98
Chứng minh A chia hết cho 99
b)B=1+1/2+...+1/96 và B bằng phân số a/b.chứng minh:Bchia hết cho 97
Bài 3: a) Xét A=(1+1/2+1/3+....+1/98).2.3.4.5.....98
=(1+1/2+1/3+....+1/98).(9.11).2.3.4.....98
=(1+1/2+1/3+....+1/98).99.2.3.4....98⋮99
(đpcm)
Cho phân số a/b thỏa mãn: a/b=1+1/2+...+1/96
Chứng minh rằng: a chia hết cho 97
Xin nhờ mọi người giúp em với ạ! Chiều em phải nộp rồi.
a) Cho A = \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)\) .2.3.4...98 .Chứng minh rằng A chia hết cho 99.
b) Cho B = \(\frac{1}{1}\) +\(\frac{1}{2}\) +\(\frac{1}{3}\) + ... + \(\frac{1}{96}\) và B bằng phân số \(\frac{a}{b}\) . Chứng minh rằng a chia hết cho 97
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
câu 1:
a) cho \(S=1+3+3^2+3^3+...+3^{96}+3^{97}+3^{98}+3^{99}\)Chứng minh S chia hết cho 40
b) Rút gọn phân thức: \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}\)