Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minhduc
Xem chi tiết
Uchiha Madara
Xem chi tiết
Uchiha Madara
17 tháng 2 2016 lúc 19:28

VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒ đpcm

Cách khác:

Từ giả thiết suy ra a>0a>0 và bc>0bc>0. Bất đẳng thức cần chứng minh tương đương với

a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0

Vì a3>36a3>36 nên

13+(b+ca)2−b+ca−3a3>(b+ca)2−b+ca+14=(b+ca−12)2>0.Đây là bài 1

Lê Vũ Nguyên Hưng
1 tháng 3 2016 lúc 15:50

tự hỏi và giải luôn à

Uchiha Madara
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 1:19

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

Đạt Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:55

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

Hoàng Hưng Đạo
Xem chi tiết
zanggshangg
14 tháng 5 2021 lúc 21:04

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
zanggshangg
14 tháng 5 2021 lúc 21:09

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

Hà Tô Việt
Xem chi tiết
Hà Tô Việt
Xem chi tiết
Hà Tô Việt
Xem chi tiết