Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+bc+ca}
Bài 1:
Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+bc+ca}
Bài 2:
Với a,b,c >0; n ∈ N*.CMR:
anb+c+bna+c+cna+b≥32(an+bn+cna+b+c)
Bài 1:
Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+b
Bài 2:
Cho x,y,z>0 thỏa điều kiện x2+y2+z2=9
Tìm giá trị nhỏ nhất của P=x5y2+y5z2+z5x2
c+ca}
Bài 3:
Với a,b,c >0; n ∈ N*.CMR:
anb+c+bna+c+cna+b≥32(an+bn+cna+b+c)
VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒ đpcm
Cách khác:
Từ giả thiết suy ra a>0a>0 và bc>0bc>0. Bất đẳng thức cần chứng minh tương đương với
a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0
Vì a3>36a3>36 nên
13+(b+ca)2−b+ca−3a3>(b+ca)2−b+ca+14=(b+ca−12)2>0.Đây là bài 1
Bài 1:
Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+b
Bài 2:
Cho x,y,z>0 thỏa điều kiện x2+y2+z2=9
Tìm giá trị nhỏ nhất của P=x5y2+y5z2+z5x2
c+ca}
Bài 3:
Với a,b,c >0; n ∈ N*.CMR:
anb+c+bna+c+cna+b≥32(an+bn+cna+b+c)
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Cho a + b + c = 5 ; ab + bc + ca = 17 4 ; abc = 1. Tính 1) a2 + b2 + c2
2) a2b2 + b2c2 + c2a2
3) a3 + b3 + c3
4) a4 + b4 + c4
Nhanh lên mọi người mik còn phải gửi bài cho giáo viên mình nữa
1: Ta có: \(a^2+b^2+c^2\)
\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)
\(=5^2-2\cdot174=-323\)
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
a )
`VP= (a+b)^3-3ab(a+b)`
`=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`
`=a^3+b^3 =VT (đpcm)`
b)
b) Ta có
`VT=a3+b3+c3−3abc`
`=(a+b)3−3ab(a+b)+c3−3abc`
`=[(a+b)3+c3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`
`=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`
a) Ta có:
`VP= (a+b)^3-3ab(a+b)`
`=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`
`=a^3 + b^3=VT(dpcm)`
b) Ta có
`VT=a^3+b^3+c^3−3abc`
`=(a+b)^3−3ab(a+b)+c^3−3abc`
`=[(a+b)^3+c^3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`
`=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`
Cho abc=2 và a3>72 .
CMR a2/3 + b2 + c2 > ab + bc + ac?
Cho abc=2 và a3>72 .
CMR a2/3 + b2 + c2 > ab + bc + ac?
Cho abc=2 và a3>72 .
CMR a2/3 + b2 + c2 > ab + bc + ac?