a - b + 2015; b-c +2015; c - a +2015 la 3 so nguyen lien tiep (voi a, b, c la cac so nguyen). hoi do la 3 so nao
\(chứng_{ }minh_{ }\frac{a}{b}=\frac{c}{d}_{ }biết_{ }\frac{a^{2015}+b^{2015}}{a^{2015}-b^{2015}}=\frac{c^{2015}+d^{2015}}{c^{2015}-d^{2015}}\)
tick cho mình vài cái cho đủ 100 điểm hỏi đáp đi
cho a,b,c là 2 số thực dương thỏa mãn 1/a +1/b +1/c = 1/ (a+b+c)
chứng minh 1/a^2015 +1/b^2015 + 1/c^2015 = 1/ (a^2015 + b^2015 + c^2015)
cho a,b,c là 2 số thực dương thỏa mãn 1/a +1/b +1/c = 1/ (a+b+c)
chứng minh 1/a^2015 +1/b^2015 + 1/c^2015 = 1/ (a^2015 + b^2015 + c^2015)
So sánh a và b biết a=2015^2016-2015^2015 ,b=2015^2017-2015^2016
cho 1/a + 1/b + 1/c = 1/(a+b+c)
c/m : 1/(a^2015) + 1/(b^2015) + 1/(c^2015) = 1/(a^2015 + 1/b^2015 +1/c^2015).
^ la so mu nha....
So sánh a và b biết a=2015^2016-2015^2015 ; b=2015^2017-2015^2016
\(A=2015^{2016}-2015^{2015}\)
\(=2015^{2015}\left(2015-1\right)\)
\(=2015^{2015}.2014\)
\(B=2015^{2017}-2015^{2016}\)
\(=2015^{2016}\left(2015-1\right)\)
\(=2015^{2016}.2014\)
Vì \(2015^{2015}< 2015^{2016}\)
nên \(A< B\)
Ta có :
\(2015^{2016}< 2015^{2017}\)
\(2015^{2015}< 2015^{2016}\)
\(\Rightarrow\)\(A=2015^{2016}-2015^{2015}< B=2015^{2017}-2015^{2016}\)
Vậy \(A< B\)
x+y=a+b và x^2+y^2=a^2+b^2 CMR x^2015+y^2015=a^2015+b^2015
So sánh A và B biết A = 2015^2016-2015^2015 B=2015^2017-2015^2016
Ta có :
\(A=2015^{2016}-2015^{2015}=2015^{2015}\left(2015-1\right)=2015^{2015}.2014\)
\(B=2015^{2017}-2015^{2016}=2015^{2016}\left(2015-1\right)=2015^{2016}.2014\)
Vì \(2015^{2015}< 2015^{2016}\) nên \(2015^{2015}.2014< 2015^{2016}.2014\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Cho a+b+c khác 0 và a^3+b^3+c^3=abc
Tính: N=(a^2015+b^2015+c^2015):(a+b+c)^2015
Ta có : \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a=b=c\end{array}\right.\)
Từ đó tính được N
Cho a^2014 + b^2014 + c^2014 =1 và a^2015 + b^2015 + c^2015 =1. Tính tổng A= a^2013+b^2014+c^2015
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3