cho ΔABC có AB=1cm,AC=2cm và BC=\(\sqrt{3}\)
chứng minh rằng: 1)ΔABC vuông tại B
2)góc A=2*góc C
Bài 8 :
Cho ΔABC cân tại A có M là trung điểm của BC
a) Vẽ hình
b) Chứng minh rằng : AM là đường trung trực của ΔABC
c) Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB (K thuộc AB). Chứng minh rằng : BH = CK
d) Chứng minh rằng : HK//BC
e) Gọi O là giao điểm của BH và CK
Chứng minh rằng : ba điểm AOM thẳng hàng
Cho ΔABC vuông tại A, tia phân giác của góc B và góc C cắt nhay tại I. Kẻ IH vuông góc với BC. Biết IH= 1cm; HB= 2cm; HC= 3cm. Tính chu vi ΔABC
Bài 1:cho ΔABC Vuông ở C ,có góc B=60 độ , tia phân giác của góc BAC cắt BC ở E,kẻ vuông góc với AB .(K thuộc AB ) ,kẻ BD vuông góc với AE (D thuộc AE)
Chứng minh rằng :a)AK=KB b)AD =BC
bài 2 :cho ΔABC cân tại A và hai đường trung tuyến BM,CN cắt nhau tại K
a)chứng minh ΔBNC=ΔCMB
b)chứng minh ΔBKC cân tại K
c)chứng minh BC < 4.KM
bài 3 :cho ΔABC vuông tại A có BD là phân giác ,Kẻ DE vuông góc BC (E thuộc BC).Gọi F là giao điểm của AB và DE
Chứng minh rằng:
a)BD là trung trực của AE (BD vuông góc với AE)
b)DF=DC
c)AD<DC
d)AE // FC
*Làm và vẽ hình hộ mình với các bạn ơi.Mình đang rất vội (CẢM ƠN CÁC BẠN RẤT NHIỀU)*
Cho ΔABC cân tại C ( C<90). Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N.
Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng ΔCAM = ΔCBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB.
3) Kéo dài CK cắt AB tại D. Biết AB = 10cm, AC = 12cm. Tính CD.
4) Chứng minh ND = 1/2 AB
1: Xét ΔCAM vuông tại M và ΔCBN vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCAM=ΔCBN
Suy ra: CM=CN; AM=BN
Xét ΔCNK vuông tại N và ΔCMK vuông tại M có
CN=CM
CK chung
Do đó: ΔCNK=ΔCMK
Suy ra: \(\widehat{NCK}=\widehat{MCK}\)
hay CK là tia phân giác của góc ACB
2: Xét ΔCAB có CN/CA=CM/CB
nên MN//AB
3: AB=10cm
nên AD=DB=5cm
\(CD=\sqrt{12^2-5^2}=\sqrt{119}\left(cm\right)\)
Cho ΔABC cân tại C (C<900 ). Kẻ AM vuông góc với BC tại M, BN vuông góc với AC tại N.
Gọi giao điểm của AM và BN là K.
1) Chứng minh rằng ΔCAM = ΔCBN và CK là tia phân giác góc ACB.
2) Chứng minh MN//AB.
3) Kéo dài CK cắt AB tại D. Biết AB = 10cm, AC = 12cm. Tính CD.
4) Chứng minh ND = \(\dfrac{1}{2}AB\)
1) Xét \(\Delta CAM\) vuông tại M và \(\Delta CBN\) vuông tại N:
\(\widehat{C}chung.\)
\(AC=BC\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\Delta CAM=\) \(\Delta CBN\left(ch-gn\right).\)
Xét \(\Delta ABC\) cân tại C:
BN là đường cao \(\left(BN\perp AC\right).\)
AM là đường cao \(\left(AM\perp BC\right).\)
K là giao điểm của AM; BN (gt).
\(\Rightarrow\) K là trực tâm.
\(\Rightarrow\) CK là đường cao từ đỉnh C.
\(\Rightarrow\) CK là tia phân giác \(\widehat{ACB}\) (Tính chất tam giác cân).
2) \(\Delta CAM=\) \(\Delta CBN\left(cmt\right).\)
\(\Rightarrow CM=CN\) (2 cạnh tương ứng).
\(\Rightarrow\) \(\Delta CNM\) cân tại C.
\(\Rightarrow\) \(\widehat{CNM}=\dfrac{180^o-\widehat{C}}{2}.\)
Mà \(\widehat{CAB}=\dfrac{180^o-\widehat{C}}{2}\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\widehat{CNM}=\widehat{CAB}.\)
\(\Rightarrow MN//AB\left(dhnb\right).\)
3) Xét \(\Delta ABC\) cân tại C:
CD là đường cao (cmt).
\(\Rightarrow\) CD là đường trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) D là trung điểm của AB.
\(\Rightarrow\) \(AD=\dfrac{1}{2}AB=\dfrac{1}{2}10=5\left(cm\right).\)
Xét \(\Delta ACD\) vuông tại D:
\(AC^2=CD^2+AD^2\left(Pytago\right).\\ \Rightarrow12^2=CD^2+5^2.\\ \Rightarrow CD^2=119.\\ \Rightarrow CD=\sqrt{119}\left(cm\right).\)
Cho ΔABC có AB=15 cm AC=20cm BC=25cm.
a,Chứng minh ΔABC vuông.Tính đường cao AH.
b,Đường phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc AB,DF vuông góc AC.Tính diện tích AEDF.
c,Chứng minh EF^2 + BC^2 = EC^2 + BF^2
a: Xét ΔBAC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*25=15*20=300
=>AH=12(cm)
b: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
=>BD/BC=3/7; CD/CB=4/7
Xét ΔCAB có DF//AB
nên DF/AB=CD/CB
=>DF/15=4/7
=>DF=60/7(cm)
Xét ΔCAB có DE//AC
nên DE/AC=BD/BC
=>DE/20=3/7
=>DE=60/7(cm)
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
Do đó: AEDF là hình chữ nhật
=>S AEDF=DE*DF=60/7*60/7=3600/49cm2
Bài 4 Cho ΔABC có AB = 5cm, AC = 12cm, BC = 13cm. a) Chứng minh ΔABC vuông. b) Vẽ tia phân giác của góc B cắt cạnh AC tại E. Từ E kẻ ED vuông góc BC. Chứng minh BA = BD, EA = ED. c) Gọi K là giao điểm của hai tia BA và DE. Chứng minh EK = EC.
Tin nhắn đã được thu hồi
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
Suy ra: BA=BD; EA=ED
c: Xét ΔAEK vuông tại A và ΔDEC vuông tại D có
EA=ED
\(\widehat{AEK}=\widehat{DEC}\)
Do đó:ΔAEK=ΔDEC
Suy ra: EK=EC
Cho ΔABC có góc B = góc C. Tia phân giác của góc A cắt BC tại D. Chứng minh rằng
AB = AC
ΔADB = ΔADC ( câu a )
Suy ra AB = AC (hai cạnh tương ứng)
Cho ΔABC vuông tại A. Vẽ AH⊥BC (H∈BC)
a,Chứng minh ΔHBA đồng dạng ΔABC
b,Có AB=9cm;AC=12cm. Tính BC,AH
c,Trên cạnh HC lấy điểm M sao cho HM=HA.Qua M vẽ đường thẳng vuông góc với BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc IMC tại A. Chứng minh rằng ba điểm H,I,K thẳng hàng
Bài 2 ( 3 điểm): Cho ΔABC nhọn, các đường cao BD CE , cắt nhau tại H .Đường
vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K .
a) Chứng minh AH vuông góc BC
b) Chứng minh tứ giác BHCK là hình bình hành