Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Thanh Hằng
Xem chi tiết
Quốc Khánh
Xem chi tiết
Akai Haruma
18 tháng 3 2021 lúc 2:06

Lời giải:
BPT $\Leftrightarrow \frac{2x-16}{17}-2+\frac{2x-20}{15}-2\leq \frac{2x-11}{13}-3+\frac{2x-6}{11}-4$

$\Leftrightarrow \frac{2x-50}{17}+\frac{2x-50}{15}\leq \frac{2x-50}{13}+\frac{2x-50}{11}$

$\Leftrightarrow (2x-50)\left(\frac{1}{17}+\frac{1}{15}-\frac{1}{13}-\frac{1}{11}\right)\leq 0$

$\Leftrightarrow 2x-50\geq 0$

$\Leftrightarrow x\geq 25$

Vậy BPT có nghiệm $x\mathbb{R}|x\geq 25$

 

Trần Diễm Chinh
Xem chi tiết
Ngọc Nguyễn
21 tháng 4 2019 lúc 11:18

\(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)

\(\Leftrightarrow\)\(\frac{4\left(2x+2\right)}{20}+\frac{6}{20}< \frac{5\left(3x-2\right)}{20}\)

\(\Rightarrow\)\(8x+8+6< 15x-10\)

\(\Leftrightarrow\)\(8x-15x< -8-6-10\)

\(\Leftrightarrow\)\(-7x< -24\)

\(\Leftrightarrow\)\(x>\frac{24}{7}\)

Vậy bất phương trình có nghiệm là : \(x>\frac{24}{7}\)

Trần Hữu	Khánh
26 tháng 12 2021 lúc 12:16

2x+25+310<3x−242x+25+310<3x−24

 

⇔⇔4(2x+2)20+620<5(3x−2)204(2x+2)20+620<5(3x−2)20

 

⇒⇒8x+8+6<15x−108x+8+6<15x−10

 

⇔⇔8x−15x<−8−6−108x−15x<−8−6−10

 

⇔⇔−7x<−24−7x<−24

 

⇔⇔x>247x>247

 

Vậy bất phương trình có nghiệm là : x>247

Tick cho mình nhé !!.

 

Pham Huu
Xem chi tiết
Nguyễn Huy Tú
30 tháng 8 2021 lúc 19:34

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)

TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)

TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)

b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)

\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

Khách vãng lai đã xóa
Nguyễn Thùy Dương
Xem chi tiết
Nguyen Thi Trinh
20 tháng 4 2017 lúc 6:46

\(\dfrac{2x}{5}+\dfrac{3-2x}{3}\ge\dfrac{3x+2}{2}\)

\(\Leftrightarrow12x+10\left(3-2x\right)\ge15\left(3x+2\right)\)

\(\Leftrightarrow12x+30-20x-45x-30\ge0\)

\(\Leftrightarrow-53x\ge0\Leftrightarrow x\le0\)

Gia Khoa
Xem chi tiết
Đào Tùng Dương
14 tháng 9 2023 lúc 15:16

\(a,\dfrac{2x-1}{3}< \dfrac{x+6}{2}\)

\(\Leftrightarrow\dfrac{4x-2}{6}< \dfrac{3x+18}{6}\)

\(\Leftrightarrow4x-2< 3x+18\)

\(\Leftrightarrow4x-3x< 2+18\)

\(\Leftrightarrow x< 20\)

\(b,\dfrac{5\left(x-1\right)}{6}-1>\dfrac{2\left(x+1\right)}{3}\)

\(\Leftrightarrow\dfrac{5x-11}{6}>\dfrac{4x+4}{6}\)

\(\Leftrightarrow5x-11>4x+4\)

\(\Leftrightarrow5x-4x>11+4\)

\(\Leftrightarrow x>15\)

Diệp Đoàn Văn
Xem chi tiết
Diệp Đoàn Văn
8 tháng 5 2020 lúc 11:30

Giúp mình với mình cần gấp

Nguyễn Việt Lâm
8 tháng 5 2020 lúc 11:35

\(\Leftrightarrow6x-15>6x-2\)

\(\Leftrightarrow-15>-2\) (sai)

Vậy BPT đã cho vô nghiệm

Trash Như
Xem chi tiết
Akai Haruma
31 tháng 3 2022 lúc 15:29

Lời giải:
a. $2x+7>0$

$\Leftrightarrow x> \frac{-7}{2}$

b. 

$-5x+12<17$

$\Leftrightarrow -5x< 5$

$\Leftrightarrow 5+5x>0$

$\Leftrightarrow 5x>-5$

$\Leftrightarrow x>-1$

c. 

$-3x+5>-5x+2$

$\Leftrightarrow (-3x+5)-(-5x+2)>0$

$\Leftrightarrow 2x+3>0$

$\Leftrightarrow x> \frac{-3}{2}$

d.

$\frac{x}{2}+3< 7$

$\Leftrightarrow \frac{x}{2}< 4$

$\Leftrightarrow x< 8$

 

 

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2022 lúc 22:55

ĐKXĐ: \(x>0\)

\(3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(x+\dfrac{1}{4x}+1\right)-9\)

\(\Leftrightarrow3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-9\)

Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a>0\)

\(\Rightarrow3a< 2a^2-9\Rightarrow2a^2-3a-9>0\)

\(\Rightarrow\left(a-3\right)\left(2a+3\right)>0\)

\(\Rightarrow a-3>0\Rightarrow a>3\)

\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}>3\Leftrightarrow2x+1>6\sqrt{x}\)

\(\Leftrightarrow2x-6\sqrt{x}+1>0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}>\dfrac{3+\sqrt{7}}{2}\\0\le\sqrt{x}< \dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>\dfrac{8+3\sqrt{7}}{2}\\0\le x< \dfrac{8-3\sqrt{7}}{2}\end{matrix}\right.\)