Tìm giá trị nguyên dương x để a=\(\frac{128+x}{42+x}\) có giá trị lớn nhất . tìm x
Tìm giá trị nguyên của x để: A=42-x/x-5 có giá trị nhỏ nhất
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
Cho biểu thức \(A=\frac{2006-x}{6-x}\).Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó .
\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)
Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN
Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5
Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5
x=5;A=2001
tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu
Cho biểu thức \(A=\frac{2006-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)
=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6
A lớn nhất khi 6-x nên => 6-x=1
=> x=5
giá trị lớn nhất của A khi đó là:
A=(2006-5)/(6-5)=2001
Cho biểu thức \(A=\frac{2006-x}{6-x}\) . Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(A=\frac{6-x+2000}{6-x}=1+\frac{2000}{6-x}\)
A đạt GTLN ⇔\(\frac{2000}{6-x}\)đạt GTLN
\(\frac{2000}{6-x}\)đạt GTLN ⇔6−x đạt GTNN
Ta có 6−x≥1
Dấu = xảy ra ⇔x=5⇔x=5
Do đó GTLN của A \(=1+\frac{2000}{1}=2000+1=2001\)
Vậy GTLN của A là 2001 ⇔x=5
Cho biểu thức \(A=\frac{2006-x}{6-x}\) . Tìm giá trị nguyên của x để A đạt giá trị lớn nhất . Tìm giá trị lớn nhất đó
\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)
A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN
\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN
Ta có \(6-x\ge1\)
Dấu = xảy ra \(\Leftrightarrow x=5\)
Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)
Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)
Tìm x nguyên dương để A= \(\frac{2014-x}{2015-x}\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
\(A=\frac{2014-x}{2015-x}\)
\(\Rightarrow A=\frac{2015-x-1}{2015-x}\)
\(\Rightarrow A=1-\frac{1}{2015-x}\)
Để A có Min thì \(\frac{1}{2015-x}\)có GTLN \(\Rightarrow2015-x\)phải đạt GTNN và \(\frac{1}{2015-x}>0\)
\(\Rightarrow2015-x=1\Leftrightarrow x=2014\)
Vậy Min A = 1-1=0<=> x = 2014
\(A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}\)
A nhỏ nhất khi \(\frac{1}{2015-x}>0\)lớn nhất, để \(\frac{1}{2015-x}\)lớn nhất khi 2015-x>0 nhỏ nhất. 2015-x nhỏ nhất khi x lớn nhất và x là số nguyên dương => x=2014
Tìm số nguyên dương x lớn nhất để các phân số có giá trị nguyên:
\(\frac{x^2+2x+1}{x+23}\)
Cho \(K=\frac{2\sqrt{x}+3}{\sqrt{x}-5}\).tìm g trị nguyên lớn nhất của x để K có giá trị là số nguyên dương
Ta có :
\(K=\frac{2\sqrt{x}+3}{\sqrt{x}-5}=\frac{2\sqrt{x}-10}{\sqrt{x}-5}+\frac{13}{\sqrt{x}-5}=2+\frac{13}{\sqrt{x}-5}\)là số nguyên dương
<=> 13 chia hết cho \(\sqrt{x}-5\)
<=> \(\sqrt{x}-5\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
<=> \(\sqrt{x}\in\left\{-12;4;6;18\right\}\)
<=> \(x\in\left\{16;36;324\right\}\) (vì \(\sqrt{x}\ge0\))
Do x nguyên và x có GTLN nên x = 324
Tìm cá số nguyên x để A = \(\frac{2016}{12-x}\) có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Để A đạt GTLN
=>12-x là số nguyên dương nhỏ nhất
=>A=\(\frac{2016}{1}=2016\)
Dấu "=" xảy ra khi 12-x=1
=>x=11
Vậy Amax=2016 khi x=11
Để A đạt GTLN
=>12-x là số nguyên dương nhỏ nhất
=>A=$\frac{2016}{1}=2016$20161 =2016
Dấu "=" xảy ra khi 12-x=1
=>x=11
Vậy Amax=2016 khi x=11
Để A đạt GTLN
=> 12 - x là số nguyên dương nhỏ nhất
=> A =
Dấu = xảy ra khi 12 - x = 1
=> x = 11
Vậy Amax = 2016 khi x = 11