tìm số dư khi chia đa thức x^2018-x^2017+17x+4 cho x+1. mk cảm ơn trc nha
Tìm dư khi chia đa thức x^2018-x^2017+17x+4 cho x+1
Tìm số dư khi chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\).
Giải: Định lý Bê-du : số dư trong phép chia đa thức f(x) cho nhị thức x - a đúng bàng f(a).
Hệ quả: Nếu a là nghiệm của đa thức f(x) thì f(x) chia hết cho x-a.
(Bạn không nhất thiết phải nêu định lí trong bài làm, mình chỉ nêu ra cụ thể cho bạn hiểu)
Áp dụng định lí Bê-du, ta có:
f(a) = f(-1) = (-1)2018 - (-1)2017 + 17.(-1) + 4
= 1 - 1 - 17 + 4 = -13
Vậy số dư trong phép chia đa thức \(x^{2018}-x^{2017}+17x+4\) cho \(x+1\)
là -13.
Chúc bạn học tốt@@
Tìm các số nguyên x để đa thức 3\(x^3+10x^2-4\) chia hết cho đa thức 3x+1
3x3+10x2-5 chia hết cho 3x-1
<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1
<=> 9x2-5 chia hết cho 3x+1
<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1
<=> 3x-5 chia hết cho 3x+1
<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)
Vì 3x+1 chia 3 dư 1
<=> 3x+1 E {1;-2}
<=> 3x E {0;-3} <=> x E {0;-1}
tìm phần dư khi chia đa thức f(x)= x1234-1 cho đa thức g(x)= (x2+1)(x2-x+1)
tìm phần dư khi chia đa thức f(x)= x1234-1 cho đa thức g(x)= (x2+1)(x2-x+1)
Tìm số dư trong phép chia đa thức ( x^100 +x^20 - 13x + 7 ) : ( 8x + 5 )
Tìm đa thức dư của phép chia x2019+x2018+x+2018 cho x2-1.
Các cậu giúp giùm mk với, then kiu các cậu ha :)))
Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)
\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)
Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)
Thay lần lượt \(x=-1\) và \(x=1\) vào ta được:
\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)
Đa thức dư là \(2x+2019\)
Lời giải:
Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.
Đặt đa thức dư cần tìm là $ax+b$
Ta có:
\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương
Lần lượt thay $x=1,x=-1$ ta có:
\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)
Vậy đa thức dư là $2x+2019$
CHO đa thức f(x)=ax^2+(a+b)*x+b. Tìm a và b biết rằng f(x) nhận -5/4 là nghiệm và khi chia cho đa thức (x-2) thì có dư là 39
thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b
Bài 3: Khi chia đa thức \(P=x^{81}+ax^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ax^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Bài 3: Khi chia đa thức \(P\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016