Giải pt:
\(x^2+4\sqrt{x-1}=2-x\)
Giúp mình nhanh nkaaa.
Giải PT:
a)\(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
b)\(2\left(x^2+2\right)=5\sqrt{x^3-1}\)
c)\(x^2-3x+1=\frac{5\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
GIẢI = CÁCH ĐẶT ẨN PHỤ HOÀN TOÀN
a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chia 2 vế cho x2 - 2x + 4 ta được:
\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)
Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:
\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)
\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)
\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)
Vậy có 2 nghiệm trên
câu b, c tương tự thôi
Mn ơi giải giúp mình pt này vs :
\(19+3x+4\sqrt{-x^2-x-6}=6\sqrt{2-x}+12\sqrt{2-x}+12\sqrt{x+3}\)
1) Tìm x,y TM:
9^x-7^x=2^y
2) Giải pt:
\(\sqrt{x}+\sqrt{2-x}=\dfrac{2x}{\sqrt{2x-1}}\)
Mọi người giúp mình nhé =))
Mình làm câu 2 trước nhé:
đkxđ: \(\dfrac{1}{2}< x\le2\)
Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\) (1)
Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\) (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)
Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\)
Vậy pt đã cho có nghiệm duy nhất \(x=1\)
Giải pt sau:
\(\sqrt{x-2}+\sqrt{4-x}=2x^{^2}-5x-1\)
Giải giúp e vss ạ!!!!
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/giai-pt-sqrtx-2sqrt4-x2x2-5x-1.219493072549
Giải các pt sau:
\(\sqrt{5-x^6}=\sqrt[2]{3x^4-2}\)
\(\sqrt{3-x}+\sqrt{x-1}=2+\left(x-y\right)^2\)
\(\sqrt{2x-1}+x^2-3x+1=0\)
\(\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}+\sqrt{x+4}\)
mình đang cần gấp, bạn nào giải nhanh trong ngày hôm nay mk tích cho nhé
Mọi ng ơi giúp mình với:
Giải pt :
\(\sqrt[3]{x+2}+\sqrt[3]{2x-1}+x=4\)
đề có sai ko nhỉ xài đủ pp mà vừa lẻ vừa xấu hết
Đề đúng nhé các bạn. Bài này phải sử dụng pp hàm số mới đc. có thể vô ngiệm hoặc nghiệm xấu đấy
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
c)\(\sqrt{x-7}+\sqrt{9-x}=x^2-16+66\)
giải pt nhé giúp mình với chiều học rồi
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)
Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)
\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)
Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)
\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)
SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)
b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)
..... giải nốt tiếp ra x=1
c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
ĐK:....
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)
\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)
\(=\left(x-8\right)^2+2\ge2\)
Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)
\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)
Giúp mình với cảm ơn ạ
Giải các pt vô tỉ sau
1)\(\sqrt{21-x}+1=x\)
2)\(\sqrt{8-x}+2=x\)
3)\(1+\sqrt{3x+1}=3x\)
4)\(2+\sqrt{3x-5}=\sqrt{x+1}\)
1) Ta có: \(\sqrt{21-x}+1=x\)
\(\Leftrightarrow21-x=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-2x+1-21+x=0\)
\(\Leftrightarrow x^2-3x-20=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)
1)\(\sqrt{21-x}+1=x\)
\(\Leftrightarrow21-x=\left(x-1\right)^2\)
\(\Leftrightarrow21-x=x^2-2x+1\)
\(\Leftrightarrow x^2-x-20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
2)\(\sqrt{8-x}+2=x\)
\(\Leftrightarrow8-x=\left(x-2\right)^2\)
\(\Leftrightarrow8-x=x^2-4x+4\)
\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
3)\(1+\sqrt{3x+1}=3x\)
\(\Leftrightarrow3x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow3x+1=9x^2-6x+1\)
\(\Leftrightarrow9x^2-9x=0\Leftrightarrow9x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Giải PT
a)\(8x^2-8x+3=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
b)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
c)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
GIẢI = CÁCH ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN
MONG CÁC BẠN GIẢI NHANH GIÚP MÌNH
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
\(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)\(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
\(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)\(t=x\Leftrightarrow x^2=x^2+1VN\)b) phương trình đã cho nhân đôi sau đó biến đổi tương đương:
\(\left[\sqrt{x^2+1}-\left(x+3\right)\right]^2=8\)
\(\Leftrightarrow\sqrt{x^2+1}-\left(x+3\right)=\pm2\sqrt{2}\)
c) \(PT\Leftrightarrow\left(x+2\right)^3+2\sqrt{\left(x+2\right)^3}=\left(3x+2\right)^2+2\left(3x+2\right)\)
xét: \(f\left(t\right)=t^2+2t\left(t>0\right)\)
\(f\left(t\right)=2t+2>0\)
\(\Rightarrow\sqrt{\left(x+2\right)^3}=3x+2\)
Tự lm nốt nhé @tran huu dinh