Chứng minh :2m/b.(b+m).(b+2m) = 1/b.(b+m) - 1/(b+m).(b+2m)
cho: a/m < b/m (a,b thuộc Z và m>0). chứng minh (a+b)/2m > a/m và(a+b)/2m < b/m
\(\frac{a}{m}=\frac{2a}{2m};\frac{b}{m}=\frac{2b}{2m}\)
Vì \(\frac{a}{m}
1) Chứng minh rằng với mọi số nguyên m, n ta có
a) (m^3+2m, m^4+3m^2+1)=1
b) ((m^3)n+2m, nm+1)=1
Cho A = {x ∈ R|x - 2m - 1 ≥ 0} B = {x ∈ R| x² - (2m + 1)x + 2m ≤ 0 Tìm m để A ∩ B khác ∅ Tìm m để A \ B = A
Cho A=[m+1;m+3]A=[m+1;m+3] và B=(2m−1;2m)B=(2m−1;2m) . Số giá trị nguyên của mm để A∩B≠∅A∩B≠∅ là
Để A giao B khác rỗng thì \(\left[{}\begin{matrix}m+1< 2m\\m+3>2m-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-m< -1\\-m>-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 4\end{matrix}\right.\)
Vậy: Có 2 giá trị nguyên thỏa mãn
Cho phân số B= \(\dfrac{2m+3}{m+1}\) (m ϵ Z)
a. Với giá trị nào của m thì B nguyên.
b. Chứng minh B là phân số tối giản.
Giúp mình với mình đang cần gấp!!!
a)Do m ∈ Z => 2m+3, m+1 ∈ Z
Để 2m+3/m+1 ∈ Z => 2m+3 ⋮ m+1
Mà m+1 ⋮ m+1 => 2(m+1) ⋮ m+1 => 2m+2 ⋮ m+1
=> (2m+3)-(2m+2) ⋮ m+1 => 1 ⋮ m+1
Do m+1 ∈ Z => m+1 ∈ {1; -1}
Nếu m + 1 = 1 => m = 0 (t/m)
m+1 = -1 => m = -2 (t/m)
Vậy m ∈ {0; -2}
b) Gọi ƯCLN(2m+3, m+1) = d (d ∈ N*)
=> 2m+3
m+1 ⋮ d => 2(m+1) ⋮ d => 2m+2 ⋮ d
=> (2m+3) - (2m+2) ⋮ d
=> 1 ⋮ d
Mà d∈ N* => d =1
Vậy phân số B tối giản (đpcm)
Chứng minh rằng :
a) 1/a - 1/a + 1 = 1/a x (a + 1)
b) 1/b - 1/b + m = m/b x (b + m)
c) 1/c x (c + m) - (c + m) (c + 2m)m = 2 x m/c x (c + m) x (c + 2m)
Giúp mình làm bài này với
a) \(\frac{1}{a}-\frac{1}{a+1}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
b) \(\frac{1}{b}-\frac{1}{b+m}=\frac{\left(b+m\right)-b}{b\left(b+m\right)}=\frac{m}{b\left(b+m\right)}\)
1.Chứng minh rằng :
a) 1/a - 1/a + 1 =1/a x( a+1)
b)1/b - 1/b + m = m/b x(b+m)
c) 1/c x(c + m) - 1/ (c + m)x (c + 2m) = 2 x m/c x(c + m)x(c + 2m)
Giúp mình làm bài này với
a) \(\frac{1}{a}-\frac{1}{a+1}=\frac{\left(a+1\right)-a}{a\cdot\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)(đpcm)
b) \(\frac{1}{b}-\frac{1}{b+m}=\frac{\left(b+m\right)-b}{b\left(b+m\right)}=\frac{m}{b\left(b+m\right)}\)(đpcm)
1) Cho m>2, chứng minh m2-2m>0.
Cho a<0; b<0 và a>b. Chứng minh 1/a<1/b
Suy ra kết quả tương tự a≥b>0
1, Vì m > 2
\(\Rightarrow\) m - 2 > 2 - 2
\(\Rightarrow\) m(m - 2) > m(2 - 2)
\(\Rightarrow\) m2 - 2m > 0
a < 0; b < 0; a > b
\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))
Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn
Chúc bn học tốt!!
Cho a lớn hơn b [m lớn hơn 0]
Chứng minh a/m bé hơn a+b/2m bé hơn b/m
Ta có \(a< b\Rightarrow a+a=2a< a+b\)
\(\Rightarrow\frac{a+b}{2m}>\frac{2a}{2m}\)\(\Rightarrow\frac{a+b}{2m}>\frac{a}{m}\)1
\(a< b\Rightarrow b+b=2b>a+b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)\(\Rightarrow\frac{a+b}{2m}>\frac{b}{m}\)2
Từ 1 và 2 => \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)(đpcm)