Chứng minh rằng: Bình phương của một số nguyên lẻ chia cho 8 luôn có số dư là 1
giải bài này giùm với :
chứng minh rằng khi chia bình phương của một số nguyên lẻ cho 8 luôn luôn được số dư là 1.
1) Cho P= 1+x+x^2+....+x^10. Chứng minh rằng: xP-P = x^11-1?
2) Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ?
3) Chứng minh rằng hiệu các bình phương của hai số chẵn liên tiếp luôn chia hết cho 4?
4) Biết số tự nhiên n chia cho 8 dư 5. Khi đó n^2 chia cho 8 có dư bằng...?
5) Tìm giá trị x thỏa mãn: 4x(5x-1)+10(2-2x)=16?
6) Phân tích đa thức thành nhân tử: x^3+2x^2-11x-12?
Chứng minh rằng số chính phương lẻ chia cho 8 luôn dư 1
Chứng minh rằng bình phương một số lẻ chia 8 dư 1.
Số lẻ là 2k+1
Ta có: (2k+1)2==(2k+1).(2k+1)=2k.(2k+1)+2k+1=2k.2k+2k+2k+1=4k2+4k+1=4.(k2+k)+1
=4.k.(k+1)+1
Vì k và k+1 là 2 số tự nhiên liên tiếp.
=>k.(k+1) chia hết cho 2
=>4.k.(k+1) chia hết cho 8
=>4.k.(k+1)+1:8(dư 1)
=>(2k+1)2:8(dư 1)
=>Bình phương của 1 số lẻ chia 8 dư 1
=>ĐPCM
Số lẻ có dạng 2k + 1
( 2 k + 1 ) ^2 = 4k^2 + 4k + 1
= 4k ( k + 1 ) + 1
Vì k ( k +1 ) là hai số tự nhiên liên tiếp => k ( k+ 1 ) chia hết cho 2 => 4 k(k + 1 ) chia hết cho 8
=> 4 k(k+ 1 ) + 1 chia 8 dư 1
=> 4k^2 + 4k + 1 chia 8 dư 1 => (2k+ 1 )^2 chia 8 dư 1 ( ĐPCM)
Đây là câu hỏi dành cho học sinh lớp 6 thì đúng hơn.
chứng minh rằng số chính phương lẻ luôn chia 8 dư 1
1.
a) Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng tích (p-1)(p+1) chia hết cho 24
b) Cho p và p+4 là số nguyên tố(p>3). Chứng minh rằng p+8 là hợp số
2. Chứng minh với mọi n thuộc N thì: 8n+111...11(n chữ số) chia hết cho 9
3.
a) Chứng minh rằng khi bình phương của một số nguyên lẻ cho 8 ta luôn được số dư là 1
b) Chứng minh rằng nếu có 6 số nguyên a1;a2;a3;a4;a5;a6 thoả mãn điều kiện:
a12+a22+a32+a42+a52+a62 thì cả sáu số đó đều là số lẻ
Câu 3 phần b dấu + ở cuối là dấu = nha các bạn
Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).Số ước nguyên duơng của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu
VD: 21 không là số chính phương
81=92 là số chính phương
C/m :
a) Bình phương của 1 số nguyên lẻ chia cho 4 thì dư 1
b) Bình phương của 1 số nguyên lẻ chia cho 8 thì dư 1
a)gọi \(2x+1\) là công thức tổng quát của số nguyên lẻ. ( x nguyên )
ta có : \(\left(2x+1\right)^2=4x^2+4x+1=4x\left(x+1\right)+1\)
ta thấy \(4x\left(x+1\right)⋮4\) \(\forall x\) mà 1 lại ko chia hết cho 4 \(\Rightarrow\left(2x+1\right)^2:4\)dư 1 \(\Rightarrow dpcm\)
Chứng minh rằng:
a) Hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
Chứng minh rằng
a)bình phương của 1 số lẻ chia cho 4 dư 1
b)bình phương của 1 số lẻ chia cho 8 dư 1
a) Số lẻ c ó dạng \(2k+1\left(k\in N\right)\)
Bình phương của số lẻ là :
\(\left(2k+1\right)^2=4k^2+4k+1\)
Mà \(4k^2+4k⋮4\)
\(\Leftrightarrow4k^2+4k+1\) chia 4 dư 1
\(\Leftrightarrow\) Bình phương của 1 số lẻ chia 4 dư 1
Chứng minh rằng:
a) Bình phương của một số lẻ chia cho 4 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có:
(2k+1)^2=4k^2+4k+1
Mà 4k^2+4k chia hết cho 4 nên 4k^2+4k+1 chia 4 dư 1.
Hay (2k+1) chia 4 dư 1
b) Bình phương của một số lẻ chia cho 8 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có: (2k+1)^2=4k^2+4k+1
Ta lại có: 4k^2+4k chia hết cho 4
4k^2+4k chia hết cho 2
Suy ra 4k^2+4k chia hết cho 8
vậy 4k^2+4k+1 chia 8 dư 1
hay (2k+1)^2 chia 8 dư 1