Cho đường tròn (O1) và (O2) tiếp xúc ngoài tại K. Vẽ tiếp tuyến chung ngoài AD {A thuộc (O1); D thuộc (O2)}. Vẽ đường kính AO1B rồi vẽ qua B tiếp tuyến BM với đường tròn (O2).
a) Cm: B, K, D thẳng hàng và AB^2 = BK . BD
b) BM = AB
Cho 2 đường tròn (O1; R1); (O2; R2) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài tại BC (B thuộc O1, C thuộc O2). Tiếp tuyến chung tại A cắt BC ở I.
a) CM tam giác ABC, tam giác IO1O2 vuông và BC = 2\(\sqrt{R1R2}\)
b) Gọi R là bán kính đường tròn O tiếp xúc với BC và tiếp xúc ngoài 2 đường tròn O1, O2. CM \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}\)
a) Theo tính chất hai tiếp tuyến cắt nhau ta có IA = IB = IC.
Do đó tam giác ABC vuông tại A.
Lại có \(IO_1\perp AB;IO_2\perp AC\) nên tam giác \(IO_1O_2\) vuông tại I.
b) Đầu tiên ta chứng minh kết quả sau: Cho hai đường tròn (D; R), (E; r) tiếp xúc với nhau tại A. Tiếp tuyến chung BC (B thuộc (D), C thuộc (E)). Khi đó \(BC=2\sqrt{Rr}\).
Thật vậy, kẻ EH vuông góc với BD tại H. Ta có \(DH=\left|R-r\right|;DE=R+r\) nên \(BC=EH=\sqrt{DE^2-DH^2}=2\sqrt{Rr}\).
Trở lại bài toán: Giả sử (O; R) tiếp xúc với BC tại M.
Theo kết quả trên ta có \(BM=2\sqrt{R_1R};CM=2\sqrt{RR_2};BC=2\sqrt{R_1R_2}\).
Do \(BM+CM=BC\Rightarrow\sqrt{R_1R}+\sqrt{R_2R}=\sqrt{R_1R_2}\Rightarrow\dfrac{1}{\sqrt{R}}=\dfrac{1}{\sqrt{R_1}}+\dfrac{1}{\sqrt{R_2}}\).
P/s: Hình như bạn nhầm đề
Cho (O1, R1) tiếp xúc ngoài vói (O2, R2) tại C. Vẽ đường thẳng AB là tiếp tuyến chung ngoài (O1), (O2). Với A thuộc (O1), B thuộc (O2) . Vẽ (O,R) tiếp xúc ngoài vói (O1) và tiếp xúc ngoài với (O2) và (O,R) tiếp xúc với AB.
Chứng minh rằng : a) tam giác ABC vuông
b) \(\frac{1}{\sqrt{R}}=\frac{1}{\sqrt{R1}}+\frac{1}{\sqrt{R2}}\)
a)AD tính chất 2 tiếp tuyến cắt nhau
b)BC=2*căn(R1*R2)
cho hai đường tròn tâm O1 và O2 tiếp xúc ngoài tại E. Vẽ hai tiếp tuyến chung ngoài AB và CD với A và D là hai tiếp điểm thuộc (O1); B và C là hai tiếp điểm thuộc (O2). Chứng minh:
a, Tứ giác ABCD là hình thang cân (gợi ý CD và BA kéo dài cắt nhau ở F)
b, BC+AD=AB+CD (gợi ý : về tiếp tuyến chung trong tại E cắt AB và CD ở M và N
(trình bày cụ thể ra cho mình nhé)
Cho hai đường tròn ( O1 ) và ( O2 ) ngoài nhau. Gọi AB là một tiếp tuyến chung ngoài và CD là một tiếp tuyến chung trong của hai đường tròn ( A, C ϵ ( O1 ) ; ( B, D ϵ ( O2 ). Chứng minh AC, BD, O1O2 đồng quy
o ba đường tròn (o),(o1),(o2) có bán kình r,r1,r2 tiếp xúc ngoài đôi một. tìm độ dài dây ab mà tiếp tuyến chung ngoài cua (0) và (o1) cắt (02) theo r,r1,r2
Cho 2 đường tròn (O1),(O2) tiếp xúc ngoài tại A và một đường thẳng tiếp xúc (O1),(O2) lần lượt tại B và C.
a) chứng minh tam giác ABC vuông
b) Gọi M là trung điểm BC. Chứng minh AM là tiếp tuyến chung của (O1),(O2)
c) Chứng minh \(O_1M\perp O_2M\)
d) Các tia BA, CA cắt (O2),(O1) lần lượt tại D và E. Chứng minh diện tích tam giác ADE bằng diện tích tam giác ABC
( Mình sẽ làm tắt nha bạn, mấy chỗ đấy nó dễ rùi nếu ko hiểu thì cmt nhé )
a) Ta có: \(O_1B//O_2C\)( cùng vuông góc với BC )
\(\Rightarrow\widehat{BO_1A}+\widehat{CO_2A}=180^0\)
\(\Leftrightarrow\left(180^0-2\widehat{BAO_1}\right)+\left(180^0-2\widehat{CAO_2}\right)=180^0\)
\(\Leftrightarrow2\left(\widehat{BAO_1}+\widehat{CAO_2}\right)=180^0\)
\(\Leftrightarrow\widehat{BAO_1}+\widehat{CAO_2}=90^0\)
\(\Rightarrow\widehat{BAC}=90^0\)
=> tam giác ABC vuông tại A
b) \(\widehat{O_1BA}+\widehat{MBA}=\widehat{O_1AB}+\widehat{BAM}=90^0\)
\(\Rightarrow\widehat{O_1AM}=90^0\)
\(\Rightarrow AM\perp AO_1\)
=> AM là tiếp tuyến của \(\left(O_1\right)\)
CMTT : AM là tiếp tuyến của \(\left(O_2\right)\)
=> AM là tiếp tuyến chung của \(\left(O_1\right);\left(O_2\right)\)
+) Ta có: \(\hept{\begin{cases}\widehat{BMO_1}=\widehat{AMO_1}\\\widehat{CMO_2}=\widehat{AMO_2}\end{cases}}\)
Ta có; \(\widehat{BMO_1}+\widehat{AMO_1}+\widehat{CMO_2}+\widehat{AMO_2}=180^0\)
\(\Leftrightarrow2\left(\widehat{O_1AM}+\widehat{AMO_2}\right)=180^0\)
\(\Leftrightarrow\widehat{O_1AM}+\widehat{AMO_2}=90^0\)
\(\Leftrightarrow\widehat{O_1MO_2}=90^0\)
\(\Rightarrow O_1M\perp O_2M\)
d) Ta có: \(\widehat{O_1BA}=\widehat{O_1AB}=\widehat{O_2AD}=\widehat{O_2DA}\)
\(\widehat{\Rightarrow O_1BA}=\widehat{O_2DA}\)mà 2 góc này ở vị trí so le trong
\(\Rightarrow O_1B//O_2D\)
\(\Rightarrow\frac{AB}{AD}=\frac{AO_1}{AO_2}\left(1\right)\)
CMTT \(\Rightarrow\frac{AE}{AC}=\frac{AO_1}{AO_2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\)
\(\Rightarrow AB.AC=AD.AE\)
\(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AD.AE\)
\(\Rightarrow S_{\Delta ADE}=S_{\Delta ABC}\)
Cho ba đường tròn (O1); (O2); (O3) cùng bán kính R tiếp xúc ngoài từng đôi một. Các tiếp tuyến chung ngoài cắt nhau từng đôi một tại A,B,C. Cho biết dạng của tam giác ABC và tính diện tích tam giác đó. Please help.
Cho ba đường tròn (O1); (O2); (O3) cùng bán kính R tiếp xúc ngoài từng đôi một. Các tiếp tuyến chung ngoài cắt nhau từng đôi một tại A,B,C. Cho biết dạng của tam giác ABC và tính diện tích tam giác đó. Plsss help.
Cho ba đường tròn (O1); (O2); (O3) cùng bán kính R tiếp xúc ngoài từng đôi một. Các tiếp tuyến chung ngoài cắt nhau từng đôi một tại A,B,C. Cho biết dạng của tam giác ABC và tính diện tích tam giác đó. Pls help.
cho AB=18cm. C thuộc AB: AC=6cm. Trên cùng 1 nửa mp bờ AB vẽ nửa đường tròn (O1;AB/2); nửa đường tròn (O2;BC/2). Vẽ tiếp tuyến chung ngoài MK (M thuộc (O1); K thuộc (O2)). AM cắt BK ở I; MK cắt đường tròn (O;AB/2) ở E;D. Chứng minh:
a) CI vuông góc AB
b) Tính ED