Chứng minh: – y2 + 2y – 4 < 0 với mọi giá trị của y
giúp mình giải câu hỏi này nha
Giúp mình câu này với
Chứng minh x2-2xy + 2y2 +2y +5 luôn dương với mọi giá trị của biến\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)
Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với.
Câu 1. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 2. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 3. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Hãy giải ba câu hỏi này
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
Bài1:
Ta có: a2+ b2+c2+d2= a.(b+c+d)
=> a2+b2+c2+d2 -ab -ac -ad =0
=> 4a2+ 4b2+4c2+4d2-4ab -4ac -4ad=0
=> ( a2 - 4ab +4b2) + ( a2- 4ac + 4c2) +( a2 -4ad+ 4d2) + a2=0
=> ( a-2b)2 + ( a-2c)2 + (a-2d)2 + a2 =0
=> ....
KL: a=b=c=d=0
giúp mình giải gấp bài toán này nha :
chứng minh biểu thức: (2m-3).(3n-2)-(3m-2).(2n-3) luôn chia hết cho 5 với mọi giá trị của a.m và a.n
Chứng minh rằng:
x2-x+3/4 > 0 với mọi giá trị của x
x4+2y(2y-1)+2x2(y-1)+ >hoặc= 0 với mọi số thực x
cần gấp để ôn bài chiều kiểm tra
Giá trị của P = \(\frac{2x+5y}{x-2y}\)x > y > 0 và x2 + 3y2 = 4xy
Ghi cách giải ra giúp mình nha các bạn. Giải thích được thì càng tốt. Mình Cảm ơn. Cho mình hỏi luôn cách tính nhanh giá trị như thế này được không vậy ?
ta co x2+3y2=4xy suy ra x2+3y2-4xy=0 suy ra x2-xy-3xy+3y2=0 suy ra x(x-y)-3y(x-y)=0 suy ra (x-3y)(x-y)=0
với x-y=0 suy ra x=y mà theo đề bài x>y>0 suy ra x-3y=0 suy ra x=3y thay vào P là xong
Ban coi co dung khong nha
Bạn thay như thế nào thế ? Bạn làm luôn được không ?
mình thấy không khó lắm cũng đơn giản mà mình giải được luôn đấy hôm qua lúc bạn lên thì mình đi ngủ rồi hì
Giúp mình câu nâng cao này với: 5x²+2y²+6xy-8x-4y+4=0. Tính giá trị biểu thức P=x^2023+y^2023
\(5x^2+2y^2+6xy-8x-4y+4=0\)
\(\Leftrightarrow4x^2+x^2+y^2+y^2+2xy+4xy-8x-4y+4=0\)
\(\Leftrightarrow\left(4x^2+y^2+4+4xy-8x-4y\right)+\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left[\left(2x\right)^2+4xy+y^2-4\left(2x+y\right)+2^2\right]+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left[\left(2x+y\right)^2-2\cdot\left(2x+y\right)\cdot2+2^2\right]+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\forall x,y\\\left(x+y\right)^2\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2\ge0\forall x,y\)
Mặt khác: \(\left(2x+y-2\right)^2+\left(x+y\right)^2=0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x+y-2=0\\x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(-y\right)+y-2=0\\x=-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y+y-2=0\\x=-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=2\\x=-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)
Thay x,y vào P ta có:
\(P=2^{2023}+\left(-2\right)^{2023}=2^{2023}-2^{2023}=0\)
Vậy: ...
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với mik đang cần gấp
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Giải cho mình bài này với ạ, mình đang cần gấp:
Cho hàm số y = f ( x ) = ( 2m ) x .
a ) ( 0,5đ ) Xác định giá trị của m để đồ thị hàm số đi qua điểm A ( 1 ; -1 )
b ) ( 0,5đ ) Chứng minh rằng : f ( 2 ) + f ( 4 ) = 2 f ( 3 ) với mọi m