tìm giá trị nhỏ nhất của x + y + 5/x + 5/y với x>0, y>0 và x+y < hoặc = 4
Cho x,y > 0 và x+y bé hơn hoặc bằng 6. Tìm giá trị nhỏ nhất của biểu thức P = x+12/x+32/y
Lời giải:
Áp dụng BĐT AM-GM ta có:
$x+\frac{4}{x}\geq 4$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{8}{x}+\frac{32}{y}\geq \frac{(\sqrt{8}+\sqrt{32})^2}{x+y}=\frac{72}{x+y}\geq \frac{72}{6}=12$
Cộng theo vế 2 BĐT trên thì:
$P\geq 16$
Vậy $P_{\min}=16$. Giá trị này đạt tại $(x,y)=(2,4)$
tìm x, y,z biết
1) |x+1|+|y-2|+|z-5| nhỏ hơn hoặc bằng 0
2) A=|x+5| +|y-1|+|z-2|+2016 đạt giá trị nhỏ nhất
1)CÁC GIÁ TRỊ CỦA X;Y THUỘC Q THỎA MÃN |X-7/5|+|2,4-Y| LỚN HƠN HOẶC BẰNG 0. TÌM X;Y
2)GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC B=|4X-3|+|5Y+7,5|+17,5
3) GIÁ TRỊ CỦA BIỂU THỨC B=(1000-1^3).(1000-2^3).(1000-3^3).........(1000-50^3)
4)CÁC SỐ X,Y,Z THỎA MÃN (3X-5)^2006+(Y^2-1)^2008+(X-Z)^2100=0 LÀ ?
Cho x, y > 0, x + y ≤ 5. Tìm giá trị nhỏ nhất của A = x + y + 8/x + 18/ y
ta có \(x+y\le5=>-\left(x+y\right)\ge-5\)
có \(A=x+y+\dfrac{8}{x}+\dfrac{18}{y}=-\left(x+y\right)+2x+2y+\dfrac{8}{x}+\dfrac{18}{y}\)
có \(-\left(x+y\right)+2x+2y+\dfrac{8}{x}+\dfrac{18}{y}\ge-5+8+12=15\)
=>A\(\ge15\) dấu= xảy ra <=>x=2,y=3
vậy min A=15
Cho x > 0; y > 0 và x+y<=4/3 . Tìm giá trị nhỏ nhất của biểu thức M=x+y+1/x+1/y
Áp dụng BĐT cosi cho \(x,y>0\)
\(M=x+y+\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{x\cdot\dfrac{1}{x}}+2\sqrt{y\cdot\dfrac{1}{y}}=4\)
Dấu \("="\Leftrightarrow x=y=1\)
Mà \(x+y=2\le\dfrac{4}{3}\left(vô.lí\right)\) nên dấu \("="\) không xảy ra
Vậy M không có GTNN
1/ Giá trị của x^3+ 9x^2y+ 27xy^2+27y^3 Biết (1/3)x+y+1=0
2/Giá trị của x+y=4, x.y=5 và x<0
3/Giá trị của 8x^3- 12x^2y-6xy^2-y^3
4/Giá trị x nguyên tố thỏa mản: x^2-x-20=0
5/Giá trị của x thỏa mãn (x-3)(x^4+2x^2+1)=0
6/Giá trị nhỏ nhất của: A=[x+2]-51/2
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
1/ Giá trị của x^3+ 9x^2y+ 27xy^2+27y^3 Biết (1/3)x+y+1=0
2/Giá trị của x+y=4, x.y=5 và x<0
3/Giá trị của 8x^3- 12x^2y-6xy^2-y^3
4/Giá trị x nguyên tố thỏa mản: x^2-x-20=0
5/Giá trị của x thỏa mãn (x-3)(x^4+2x^2+1)=0
6/Giá trị nhỏ nhất của: A=[x+2]-51/2
cho x>0, y>0 và x*2+x*y=4. tìm giá trị nhỏ nhất của A=x^2y
Cho A = |5 - x| + |3x + y - 7| - 13. Giá trị nhỏ nhất của A bằng bao nhiêu
Tìm x;y biết -(x+3)2 - | y+7|. bé hơn hoặc bằng 0
Trả lời: (x;y)=bao nhiêu