Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hương Giang Vũ
Xem chi tiết
37-Đặng Thị Anh Thư-7A2...
Xem chi tiết
Gia Bảo
Xem chi tiết
Lê Anh  Quân
Xem chi tiết
anh ngoc
Xem chi tiết
Nguyễn Trọng Chiến
23 tháng 2 2021 lúc 21:41

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)

kato Kite
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
19 tháng 4 2017 lúc 11:29

A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)+\(\left(\dfrac{1}{6}-\dfrac{1}{7}\right)\)+...+\(\left(\dfrac{1}{98}-\dfrac{1}{99}\right)\)

Biểu thức trong dấu ngoặc thứ nhất bằng\(\dfrac{13}{60}\) nên lớn hơn \(\dfrac{12}{60}\),tức là lớn hơn 0,2,còn các dấu ngoặc sau đều dương,do đó A>0,2.

Để chứng minh A < \(\dfrac{2}{5}\),ta viết:

A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{8}\right)-...-\left(\dfrac{1}{97}-\dfrac{1}{98}\right)-\dfrac{1}{99}\)

Biểu thức trong dấu ngoặc thứ nhất nhỏ hơn \(\dfrac{2}{5}\),còn các dấu ngoặc đều dương,do đó A <\(\dfrac{2}{5}\)

Chúc bạn học giỏi!ok

Hằng Đoàn
Xem chi tiết
 Mashiro Shiina
16 tháng 7 2017 lúc 19:53

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\Rightarrow x=-2004\)

Lê Gia Bảo
16 tháng 7 2017 lúc 20:01

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1-\dfrac{x+2}{2002}-1-\dfrac{x+1}{2003}-1=0\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Rightarrow x+2004\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy \(x=-2004\)

Lê Gia Bảo
16 tháng 7 2017 lúc 20:14

1/ Ta có :

\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+....+\dfrac{1}{49\times50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.....+\dfrac{1}{50}\right)\)

\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+....+\dfrac{1}{50}\right)\times2\)

\(\Rightarrow\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{25}\right)\)

\(\Rightarrow\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+.....+\dfrac{1}{50}\)

Hay \(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...+\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)

~ Học tốt nha ~

Sách Giáo Khoa
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết