Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lí Vật
Xem chi tiết
Thái Thùy Linh
Xem chi tiết
Thái Thùy Linh
Xem chi tiết
Hoàng Tử Hà
19 tháng 4 2021 lúc 20:22

Làm bừa coi xem đk :b

\(M\in\Delta:y=3-x\Rightarrow M\left(x;3-x\right)\)

a/ MA+MB min

\(MA=\sqrt{\left(x_A-x_M\right)^2+\left(y_A-y_M\right)^2};MB=\sqrt{\left(x_B-x_M\right)^2+\left(y_B-y_M\right)^2}\)

\(Minkovsky:MA+MB\ge\sqrt{\left(x_M-x_A+x_M-x_B\right)^2+\left(y_M-y_A+y_M-y_B\right)^2}\)

\("="\Leftrightarrow\dfrac{x_A-x_M}{y_A-y_M}=\dfrac{x_B-x_M}{y_B-y_M}\Leftrightarrow\dfrac{1-x}{-1-3+x}=\dfrac{-x}{1-3+x}\)

\(\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)

|MA-MB| max

\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{1+4}=\sqrt{5}\)

Theo bdt tam giác ta luôn có: \(\left|MA-MB\right|\le AB\)

\(\Leftrightarrow\left|\sqrt{\left(x_M-1\right)^2+\left(y_M+1\right)^2}-\sqrt{x_M^2+\left(y_M-1\right)^2}\right|\le\sqrt{5}\)

\("="\Leftrightarrow M,A,B-thang-hang\)

\(\Leftrightarrow\overrightarrow{MA}=k\overrightarrow{MB}\Leftrightarrow\left\{{}\begin{matrix}x_A-x_M=k\left(x_B-x_M\right)\\y_A-y_M=k\left(y_B-y_M\right)\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1-x}{-x}=\dfrac{-4+x}{-2+x}\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)

Câu b tương tự bạn tự làm nốt

Hoàng Thị Vy Trang
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2021 lúc 17:44

a. \(\overrightarrow{BI}=\left(4;3\right)\Rightarrow R^2=IB^2=4^2+3^2=25\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-6\right)^2=25\)

b.

\(\Delta\) vuông góc d nên nhận (1;-1) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(x-y+c=0\)

Giả sử M là giao điểm \(\Delta\) với Ox và N là giao điểm với Oy \(\Rightarrow M\left(-c;0\right)\) ; \(N\left(0;c\right)\)

\(\Rightarrow\overrightarrow{MN}=\left(c;c\right)\Rightarrow MN=\sqrt{c^2+c^2}=\left|c\right|\sqrt{2}\)

\(S_{BMN}=\dfrac{1}{2}MN.d\left(B;MN\right)=\dfrac{1}{2}.\left|c\right|\sqrt{2}.\dfrac{\left|-1-3+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{2}\)

\(\Rightarrow\left|c^2-4c\right|=5\Rightarrow\left[{}\begin{matrix}c^2-4c=5\\c^2-4c=-5\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=-1\\c=5\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y+5=0\end{matrix}\right.\)

nguyen tien thien
Xem chi tiết
Cherry Blosson
Xem chi tiết
My Lê
24 tháng 8 2016 lúc 20:28

a, để d đi qua M(1;-2) thì x=1; y=-2, nên thế vào ta được:

  -2=(m-2)*1+3m+1

=>m=-1/4

b, để d// với đường thẳng y=x-5 thì a=a,,; b\(\ne\)b,, tức là

                  m-2=1=>m=3

Và               3m+1\(\ne\)-5 =>m\(\ne\)-2

Thomas Edison
Xem chi tiết
Hồ Nhật Phi
14 tháng 3 2022 lúc 12:35

undefined

Võ Thị Trâm Anh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2019 lúc 13:40

a/ \(\overrightarrow{AB}=\left(-5;4\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(4;5\right)\)

\(\Rightarrow\) phương trình đường thẳng AB có dạng:

\(4\left(x-7\right)+5\left(y+1\right)=0\Leftrightarrow4x+5y-23=0\)

b/ \(\overrightarrow{BC}=\left(0;-7\right)\)

Do \(AH\perp BC\) nên đường thẳng AH nhận \(\overrightarrow{BC}\) là một vtpt, chọn \(\overrightarrow{n_{AH}}=\left(0;1\right)\)

Phương trình đường cao AH có dạng:

\(0\left(x-7\right)+1\left(y+1\right)=0\Leftrightarrow y+1=0\)

Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_M=\dfrac{x_A+x_B}{2}=\dfrac{9}{2}\\y_M=\dfrac{y_A+y_B}{2}=1\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{9}{2};1\right)\)

\(\Rightarrow\overrightarrow{CM}=\left(\dfrac{5}{2};-5\right)\) \(\Rightarrow\) chọn \(\overrightarrow{n_{CM}}=\left(2;1\right)\) là 1 vtpt của đường thẳng CM

Phương trình trung tuyến AM:

\(2\left(x-2\right)+1\left(y+4\right)=0\Leftrightarrow2x+y=0\)

c/ \(\overrightarrow{n_{\Delta}}=\left(3;-1\right)\)

Gọi \(d\) là đường thẳng đi qua A và vuông góc \(\Delta\Rightarrow\overrightarrow{n_d}.\overrightarrow{n_{\Delta}}=0\)

\(\Rightarrow\) chọn \(\overrightarrow{n_d}=\left(1;3\right)\) là 1 vtpt của \(d\)

Phương trình đường thẳng d:

\(1\left(x-7\right)+3\left(y+1\right)=0\Leftrightarrow x+3y-4=0\)

Hình chiếu vuông góc \(A'\) của A lên \(\Delta\) chính là giao điểm của d và \(\Delta\)

\(\Rightarrow\) tọa độ \(A'\) là nghiệm của hệ:

\(\left\{{}\begin{matrix}x+3y-4=0\\3x-y-12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\) \(\Rightarrow A'\left(4;0\right)\)

d/ \(\Delta'\perp\Delta\Rightarrow\overrightarrow{n_{\Delta'}}.\overrightarrow{n_{\Delta}}=0\Rightarrow\) chọn \(\overrightarrow{n_{\Delta'}}=\left(1;3\right)\) là 1 vtpt của \(\Delta'\)

\(\Rightarrow\) phương trình \(\Delta'\) có dạng: \(x+3y+c=0\)

\(d\left(A;\Delta'\right)=\dfrac{\left|x_A+3y_A+c\right|}{\sqrt{1^2+3^2}}=\sqrt{10}\)

\(\Leftrightarrow\left|7-3+c\right|=10\Leftrightarrow\left|c+4\right|=10\)

\(\Rightarrow\left[{}\begin{matrix}c+4=10\\c+4=-10\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=6\\c=-14\end{matrix}\right.\)

Vậy có 2 đường thẳng \(\Delta'\) thỏa mãn: \(\left[{}\begin{matrix}x+3y+6=0\\x+3y-14=0\end{matrix}\right.\)

Nguyễn Việt Lâm
6 tháng 3 2019 lúc 22:40

absbsfasđấ

Trần Duy Anh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 6 2020 lúc 13:34

M thuộc d nên tọa độ có dạng:

\(M\left(t+3;t+2\right)\) với \(t>-3\)

Áp dụng công thức khoảng cách:

\(d\left(M;\Delta\right)=\frac{\left|2\left(t+3\right)-\left(t+2\right)-3\right|}{\sqrt{2^2+\left(-1\right)^2}}=2\sqrt{5}\)

\(\Leftrightarrow\left|t+1\right|=10\Rightarrow\left[{}\begin{matrix}t=9\\t=-11\left(l\right)\end{matrix}\right.\)

\(\Rightarrow M\left(12;11\right)\)