Chương 4: SỐ PHỨC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thái Thùy Linh

Cho đường thẳng đenta: x+y-3=0

a) A(1;-1) B(0;1) . Tìm M nằm trên đường thẳng đenta sao cho MA+MB nhỏ nhất và |MA-MB| lớn nhất

b) A(1;-1) B(2;3) . Tìm M nằm trên đường thẳng đenta sao cho MA+MB nhỏ nhất và |MA-MB| lớn nhất

Hoàng Tử Hà
19 tháng 4 2021 lúc 20:22

Làm bừa coi xem đk :b

\(M\in\Delta:y=3-x\Rightarrow M\left(x;3-x\right)\)

a/ MA+MB min

\(MA=\sqrt{\left(x_A-x_M\right)^2+\left(y_A-y_M\right)^2};MB=\sqrt{\left(x_B-x_M\right)^2+\left(y_B-y_M\right)^2}\)

\(Minkovsky:MA+MB\ge\sqrt{\left(x_M-x_A+x_M-x_B\right)^2+\left(y_M-y_A+y_M-y_B\right)^2}\)

\("="\Leftrightarrow\dfrac{x_A-x_M}{y_A-y_M}=\dfrac{x_B-x_M}{y_B-y_M}\Leftrightarrow\dfrac{1-x}{-1-3+x}=\dfrac{-x}{1-3+x}\)

\(\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)

|MA-MB| max

\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{1+4}=\sqrt{5}\)

Theo bdt tam giác ta luôn có: \(\left|MA-MB\right|\le AB\)

\(\Leftrightarrow\left|\sqrt{\left(x_M-1\right)^2+\left(y_M+1\right)^2}-\sqrt{x_M^2+\left(y_M-1\right)^2}\right|\le\sqrt{5}\)

\("="\Leftrightarrow M,A,B-thang-hang\)

\(\Leftrightarrow\overrightarrow{MA}=k\overrightarrow{MB}\Leftrightarrow\left\{{}\begin{matrix}x_A-x_M=k\left(x_B-x_M\right)\\y_A-y_M=k\left(y_B-y_M\right)\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1-x}{-x}=\dfrac{-4+x}{-2+x}\Leftrightarrow x=-2\Rightarrow y=5\Rightarrow M\left(-2;5\right)\)

Câu b tương tự bạn tự làm nốt


Các câu hỏi tương tự
Trần Anh
Xem chi tiết
Nguyễn Yến Vy
Xem chi tiết
Khanh Huyen Nguyen
Xem chi tiết
Phúc Trần
Xem chi tiết
Nguyễn Bình Nguyên
Xem chi tiết
AllesKlar
Xem chi tiết
AllesKlar
Xem chi tiết
chu thị ánh nguyệt
Xem chi tiết
Lê Thị Kim Chi
Xem chi tiết