tìm số dương x y tohar mãn xy = 3( x+ y 0
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
Tìm cặp số (x ; y) nguyên dương thỏa mãn xy = 3(y-x)
CHo x,y là các số dương thỏa mãn (11x + 6y +2015)(x-y+3) = 0 . tìm giá trị nhỏ nhất của biểu thức P=xy-5x+2015
bạn tham khảo nhá :))
(11x+6y+2015)(x-y+3)=0
=>x-y+3=0 vì x,y>0 nên 11x+6y+2015>0
=>y=x+3
=>P=x(x+3)-5x+2016=x2-2x+2016=(x-1)2+2015\(\ge2015\)
Vậy Pmin=2015 <=>x=1 và y=4
Cách làm của bạn Huy Thắng đúng nhưng bạn hơi nhầm một chút phần cuối. Chắc do bạn sơ suất.
\(P=\left(x-1\right)^2+2014\) nhé.
Trà My kết luận sai vì P = 2014 thì x =1 và y = 4.
Các em chú ý đừng để sai những chi tiết nhỏ như vậy
Cho x , y là các số dương thỏa mãn (11x + 6y + 2015) (x - y + 3) = 0 .
tìm giá trị nhỏ nhất của biểu thức P = xy - 5x + 2016
(11x + 6y + 2015) (x - y + 3) = 0 => x - y + 3 = 0 do x ; y > 0 nên 11x + 6y + 2015 > 0
=> y = x + 3.
=> P = x(x+3) - 5x + 2016 = x2 - 2x + 2016 = (x - 1)2 + 2015 \(\ge\) 2015 với mọi x
Vậy Min P = 2015 khi x - 1 = 0 <=> x = 1 => y = 4
1.Tìm các số nguyên x và y thỏa manc 6xy+4x-9y-7=0
2.Tìm giá trị nhỏ nhất của biểu thức A=x3+y3+xy,trong đó x,y là các số dương thỏa mãn điều kiện x+y=1
Tìm các cặp số ( x ; y) nguyên dương thỏa mãn: xy = 3 (y - x)
Ta có xy=3(y-x) => xy+3x-3y=0
=> x(y+3)-3y=0=> (x-3).(y+3)=-9
=> (x-3).(y+3)=-1.9=-3.3=-9.1=1.(-9)=3.(-3)=9.(-1)
=> x=2;0;-6;4;6;12
y=6;0;-2;-12;-6;-4
vì (x;y) là cặp số nguyên dương x=-2 và y=12 loại
Vấy x có hai giá trị (2;0) tương ứng với hai giá trị của y ( 6;0)