Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2022 lúc 20:36

a: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b: \(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

Nguyễn Huy Tú
26 tháng 1 2022 lúc 20:37

a, \(n^2+5=n^2+n-n-1+6=n\left(n+1\right)-\left(n+1\right)+6\)

\(\Rightarrow n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

n + 11-12-23-36-6
n0-21-32-45-7

 

b, tương tự 

 

Hoàng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 21:40

a: \(3< n^2< 30\)

=>\(\sqrt{3}< n< \sqrt{30}\)

mà \(n\in Z^+\)

nên \(n\in\left\{2;3;4;5\right\}\)

=>A={2;3;4;5}

b: |n|<3

=>-3<n<3

mà \(n\in Z\)

nên \(n\in\left\{-2;-1;0;1;2\right\}\)

=>B={-2;-1;0;1;2}

c: x=3k

=>\(x⋮3\)

mà -4<x<12

nên \(x\in\left\{-3;0;3;6;9\right\}\)

=>C={-3;0;3;6;9}

d: \(n\in N\)

mà n<5

nên \(n\in\left\{0;1;2;3;4\right\}\)

=>\(n^2+3\in\left\{3;4;7;12;19\right\}\)

=>D={3;4;7;12;19}

Trần Đức Mạnh
Xem chi tiết
Sakia Hachi
9 tháng 11 2017 lúc 19:59

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

Sakia Hachi
9 tháng 11 2017 lúc 20:11

cái này dễ hiểu hơn

5^n (5^n + 1) – 6^n (3^n + 2^n) chia hết cho 91
A = 5^n (5^n + 1) – 6^n (3^n + 2^n) = + 5^n – 18^n – 12^n
= 25^n – 18^n – (12^n – 5^n)
Ta có: 25 – 18 chia hết cho 7
Nên 25 đồng dư với 18 khi chia cho 7
Hay 25^n đồng dư với 18^n khi chia cho 7
Suy ra 25^n – 18^n chia hết cho 7
Chứng minh tương tự thì 12^n – 5^n chia hết cho 7
Nên A chia hết cho 7
Mặt khác A = 25^n – 12^n – (18^n – 5^n)
với 25^n – 12^n và 18^n – 5^n đều chia hết cho 13
Suy ra A chia hết cho 13
Vậy A chia hết cho 7.13 = 91

Thảo Phương Nguyễn
Xem chi tiết
Thảo Phương Nguyễn
Xem chi tiết
nguyễn ngọc trân
Xem chi tiết
Nguyễn Mai Linh
Xem chi tiết
Phương Thảo Nhi
Xem chi tiết
Trần Thị Thảo Nhung
Xem chi tiết