Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
tìm n ∈ Z để 2n2 + 5n - 1 ⋮ 2n - 1
chứng minh rằng với mọi số nguyên n thì
a) n2(n+1) + 2n(n+1) ⋮ 6
b) (2n-1)3 - (2n-1) ⋮ 8
c) (n+7)2 - (n-5)2 ⋮ 24
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
Nhân các đa thức sau:
a) (x + 3)(x - 4);
b) (x - 4)( x 2 + 4x +16);
c) (m n 2 - 1)( m 2 n + 5);
d) 4 x − 1 2 x + 1 2 ( 4 x 2 + 1 ) .
Thực hiện phép chia các phân thức sau:
a) n 2 − 1 n 2 + 2 n − 15 : n 2 + 5 n + 4 n 2 − 10 n + 21 với n ≠ − 5 ; − 4 ; − 1 ; 3 ; 7 ;
b) x 4 − 8 xy 3 2 xy + 5 y 2 : x 3 + 2 x 2 y + 4 xy 2 2 x + 5 y với x ≠ 0 ; y ≠ 0 và x ≠ − 5 2 y .
U = (n^{3}n3 + n^{2}n2) + (2n^{2}n2 + 2n)
Chứng minh rằng
a) A = n(3n-1) - 3n(n-2) ⋮ 5 (∀n ϵ R)
b) B = n(n+5) - (n-3)(n+2) ⋮ 6 (∀n ∈ Z)
c) C= (n2 + 3n - 1)(n+2) - n3+2 ⋮ 5 (∀n ϵ Z)
Cho A1=1=12 ; A2=1+3=4=22 ; A3=1+3+5=9=32. Đoán xem An bằng bao nhiêu?
a) n2 b) (n+1)2 c) An d) Cả a và c.