Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
fan FA
Xem chi tiết
cao van duc
27 tháng 1 2019 lúc 17:14

\(P=\left(2x+y-6\right)^2+\left(x+3\right)^2+1973>=1973\)

xay dau = <=>\(\hept{\begin{cases}x=-3\\2x+3-6\end{cases}}\)

Tống Cao Sơn
Xem chi tiết
Akai Haruma
27 tháng 4 2023 lúc 18:49

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$4y^2+1\geq 4y$

$\Rightarrow x^2+4y^2+5\geq 4(x+y)$

$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$

Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$

Vũ Thảo Vy
Xem chi tiết
Kha Mi
Xem chi tiết
Nguyễn Quỳnh Hương
Xem chi tiết
Ko có tên
Xem chi tiết
titanic
14 tháng 9 2018 lúc 17:37

Ta có \(2018-5x^2-y^2-4xy+x\)

\(=2018+\frac{1}{4}-\frac{1}{4}-4x^2-x^2-y^2-2.2xy+x\)

\(=2018+\frac{1}{4}-\left(2x\right)^2-2.2xy-y^2-x^2+2.\frac{1}{2}x-\frac{1}{4}\)

\(=\frac{8073}{4}-\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]\)

\(=\frac{8073}{4}-\left(2x+y\right)^2-\left(x-\frac{1}{2}\right)^2\ge\frac{8073}{4}\)( Vì \(\left(2x+y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0\))

Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x+y=0\\x-\frac{1}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-2x\\x=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)

Vậy GTNN của \(2018-5x^2-y^2-4xy+x\)là \(\frac{8073}{4}\)khi \(x=\frac{1}{2}\)\(y=-1\)

vinh
Xem chi tiết
Hoàng Lê Bảo Ngọc
7 tháng 7 2016 lúc 22:53

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(13^2=\left(5.x+12.y\right)^2\le\left(5^2+12^2\right)\left(x^2+y^2\right)\Leftrightarrow x^2+y^2\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}5x+12y=13\\\frac{x}{5}=\frac{y}{12}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)

Vậy Min \(x^2+y^2=1\Leftrightarrow\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)

Minh tú Trần
Xem chi tiết
Phat Chau
Xem chi tiết
mainyoru
1 tháng 10 2022 lúc 11:16

bạn có câu trả lời chưa, mình đang cần gấp