cho hai số thực x , y . Tìm min của : \(P=5x^2+y^2+4xy-18x-12y+2018\)
Cho hai số thực x , y . Tính giá trị nhỏ nhất của :
\(P=5x^2+y^2+4xy-18x-12y+2018\)
\(P=\left(2x+y-6\right)^2+\left(x+3\right)^2+1973>=1973\)
xay dau = <=>\(\hept{\begin{cases}x=-3\\2x+3-6\end{cases}}\)
cho hai số thực x y thỏa mãn x+y+xy=7/2
tìm min P = x2 +4y2 +4xy
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$4y^2+1\geq 4y$
$\Rightarrow x^2+4y^2+5\geq 4(x+y)$
$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$
Cho các số thực x,y thỏa mãn \(\sqrt{x+5}-y^3=\sqrt{y+5}-x^3\)
Tìm GTLN của biểu thức \(P=x^2-3xy+12y-y^2+2018\)
Bài 1: CHo 2 số thực x,y sao cho x+y=1. Tìm Min của M=5x2+y2
Bài 2: Cho 2 số x,y thỏa mãn x2+2xy+8(x+y)+2y2+12=0 Tìm Max và Min của N=x+y+1
1. Tìm Min
a, 3x^2 + 5x
b, (2x-1)^2 - x^2
2.Cho x+y=2. Tìm Min A = x^2+y^2
3. tìm Min A = x^2 + 6y^2 + 4xy - 2x - 8y + 2016
tìm gia trị lớn nhất của
2018-5x^2-y^2-4xy+x
Ta có \(2018-5x^2-y^2-4xy+x\)
\(=2018+\frac{1}{4}-\frac{1}{4}-4x^2-x^2-y^2-2.2xy+x\)
\(=2018+\frac{1}{4}-\left(2x\right)^2-2.2xy-y^2-x^2+2.\frac{1}{2}x-\frac{1}{4}\)
\(=\frac{8073}{4}-\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]\)
\(=\frac{8073}{4}-\left(2x+y\right)^2-\left(x-\frac{1}{2}\right)^2\ge\frac{8073}{4}\)( Vì \(\left(2x+y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0\))
Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x+y=0\\x-\frac{1}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-2x\\x=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)
Vậy GTNN của \(2018-5x^2-y^2-4xy+x\)là \(\frac{8073}{4}\)khi \(x=\frac{1}{2}\)và\(y=-1\)
cho 5x+12y=13 tim min x2+y2
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(13^2=\left(5.x+12.y\right)^2\le\left(5^2+12^2\right)\left(x^2+y^2\right)\Leftrightarrow x^2+y^2\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}5x+12y=13\\\frac{x}{5}=\frac{y}{12}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)
Vậy Min \(x^2+y^2=1\Leftrightarrow\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)
Cho hai số thực x,y thỏa mãn 2x+y=1. Tính giá trị của biểu thức
M= \(4x^2+4xy^2+y^2-10x-5y+8x^2y+2018\)
Tìm GTLN của -3x2-2y2-4xy+18x+12y