cho tam giác ABC vuông tại A ah vuông với bc tại H chứng minh 1/AH^2=1/AB^2+1/AC^2
Cho tam giác ABC, có AH vuông góc với BC tại H. Chứng minh rằng: a)AH<1/2(AB + AC); b) Kẻ BK vuông góc AC tại K, CL vuông góc với AB tại L. Chứng minh: AH + BK + CL < AB + BC + CA.
đang cần gấp
Cho tam giác ABC vuông tại A đường cao AH chứng minh rằng a. Tam giác ABC đồng dạng với tam giác AC b. AB. AC = AH. BC c. 1/Ah^2 = 1/AB^2 + 1/AC^2
a) Xét tam giác ABC và tam giác HAC có:
BAC = AHC =90
ABC = HAC (cùng phụ với HAB)
=> ABC đồng dạng HAC (g.g)
b) Vì ABC đồng dạng HAC
=> AB/BC = AH/AC
=> AB.AC=BC.AH
c) Vì AB.AC = BC.AH
=> AB^2.AC^2= BC^2 . AH^2
Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)
=> AB^2.AC^2= (AB^2+AC)^2.AH^2
=> 1/AH^2 =1/AB^2 +1/AC^2
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H.
1) Chứng minh tam giác ABH = tam giác ACH và H là trung điểm của BC.
2) Nếu có AB = 10cm, BC = 12 cm, hãy tính độ dài đoạn thẳng AH.
3) Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F. Lấy các điểm M và N sao cho E là trung điểm của HM, F là trung điểm của HN. Chứng minh AN = AH.
4) Tam giác ABC cần thêm điều kiện gì thì A là trung điểm của MN?
Giúp mik vs ạ mik đang cần gấp.
1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
2: Ta có: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=64\)
=>\(HA=\sqrt{64}=8\left(cm\right)\)
3: Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AH
4: Xét ΔAHM có
AE là đường trung tuyến
AE là đường cao
Do đó: ΔAHM cân tại A
=>AM=AH
Ta có: ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN
=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)
Ta có: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM
=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)
Ta có: AM=AH
AH=AN
Do đó: AM=AN
Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)
=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)
Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ
=>góc MAN=180 độ
=>\(2\cdot\widehat{BAC}=180^0\)
=>\(\widehat{BAC}=90^0\)
cho tam giác abc có ab=6cm,ac=8cm,bc=10cm. Kẻ ah vuông góc vs bc tại h 1 chứng minh tam giác abc vuông tại a 2 tính diện tích tam giác abc 3 tính AH
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
Ta có: BC2=102=100
AB2+AC2=62+82=100
Vậy BC2=AB2+AC2
Xét ΔABC có:
BC2=AB2+AC2
Nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có: ΔABC vuông tại A(gt)
Nên
Bài 1 : Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH (H thuộc BC)
a) Chứng minh: ABC∽HBA
b)Chứng minh: AH^2 = BH . CH
a, Xét tam giác ABC và tam giác HBA có
^B _ chung ; ^BAC = ^HBA = 900
Vậy tam giác ABC ~ tam giác HBA (g.g)
b, Xét tam giác AHC và tam giác BHA ta có
^AHC = ^BHA = 900
^HAC = ^HBA ( cùng phụ ^HAB )
Vậy tam giác AHC ~ tam giác BHA (g.g)
\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\Rightarrow AH^2=HC.HB\)
Cho tam giác ABC vuông tại A , đường cao AH
1. Biết AB = 18 cm , AC =24 cm .
a, Tính BC , BH , AH .
b, Tính các góc của tam giác ABC.
2. Kẻ HE vuông góc với AB , HF vuông góc với AC .
Chứng minh AE.EB+À.FC = AH 2
Bài 1:
a: BC=30cm
AH=14,4(cm)
BH=10,8(cm)
bài 1 :Cho tam giác ABC vuông tại A có AB =AC. Gọi d là đường thẳng bất kì đi qua A và cắt BC tại M. Kẻ BH vuông d tại H , CK vuông d tại K . chứng minh tam giác BHA = tam giác AKC
bài 2 :Cho tam giác ABC vuông tại A ( AB <AC). . Kẻ AH vuông BC tại H , trên AB lấy l sao cho lA=AC.Kẻ lK vuông góc với KH tại K.chứng minh tam giác AHC=lKA
1:
góc BAH+góc KAC=90 độ
góc BAH+góc ABH=90 độ
=>góc KAC=góc ABH
Xét ΔHBA vuông tại H và ΔKAC vuông tại K có
BA=AC
góc ABH=góc CAK
=>ΔHBA=ΔKAC
Cho tam giác ABC vuông tại A. Gọi O là trung điểm của BC, trên tia đối của tia OA lấy điểm M sao cho OM = OA
a) Chứng minh: MC = AB và MC song song AB
b) Chứng minh: OA = OB = OC
c) Kẻ AH vuông góc BC tại H. Chứng minh: 1/AH^2 = 1/AB^2 + 1/AC^2
a: Xét tứ giác ABMC có
O là trung điêm chung của AM và BC
góc BAC=90 độ
=>ABMC là hình chữ nhật
=>AB=MC và MC//AB
b: ΔACB vuông tại A
mà AO là trung tuyến
nên OA=OB=OC
c: Xet ΔABC vuông tại A có AH là đường cao
nên 1/AH^2=1/AB^2+1/AC^2
Cho tam giác ABC, góc A = 90 độ, kẻ AH vuông góc BC tại H. Chứng minh:
\(AH^2=HB.HC\)
\(AB^2=HB.BC\)
\(AC^2=HC.BC\)
\(\dfrac{1}{AH^2}=\dfrac{1}{BA^2}+\dfrac{1}{AC^2}\)
a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)(đpcm)
b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔABH\(\sim\)ΔCBA(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=HB\cdot BC\)(đpcm)