a: Xét tứ giác ABMC có
O là trung điêm chung của AM và BC
góc BAC=90 độ
=>ABMC là hình chữ nhật
=>AB=MC và MC//AB
b: ΔACB vuông tại A
mà AO là trung tuyến
nên OA=OB=OC
c: Xet ΔABC vuông tại A có AH là đường cao
nên 1/AH^2=1/AB^2+1/AC^2
a: Xét tứ giác ABMC có
O là trung điêm chung của AM và BC
góc BAC=90 độ
=>ABMC là hình chữ nhật
=>AB=MC và MC//AB
b: ΔACB vuông tại A
mà AO là trung tuyến
nên OA=OB=OC
c: Xet ΔABC vuông tại A có AH là đường cao
nên 1/AH^2=1/AB^2+1/AC^2
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
cho tam giác ABC nhọn (AC<AB). Gọi O là trung điểm của BC. Trên tia đối OA lấy điểm D sao cho OD = OA.
a) chứng minh tam giác OAC = tam giác ODB
B) chứng minh AC//BD
c) Kẻ AH vuông góc BC tại H; DK vuông góc tại K chứng minh : O là trung điểm của HK
Cho tam giác vuông tại A,kẻ đường trung tuyến AO trên tia đối của tia OA lấy điểm D sao cho O là trung điểm của AD
a chứng minh tam giác OAB= tam giác ODC và DC song song với AB
b GỌi M là trung điểm của AC chứng minh tam giác BMD cân tại M
c Gọi DM cắt BC tại E,BM cắt AD tại F Chứng minh E là trọng tâm của tam giác DCA F là trọng tâm của tam giác BAC
d chứng minh OE=1/6BC và OM vuông góc EF (ko bắt buộc làm câu này )
Cho tam giác ABC vuông tại A ( AB<AC),O là trung điểm của BC . Trên tia đối OA lấy điểm K sao cho OA=OK . VẼ AH vuông góc với BC tại H . Trên tia HC lấy điểm D sao choHD=HA . Đường vuông góc với BC tại D cắt AC tại E . Chứng minh rằng : a; Tam giác ABC = tam giác CKA và OA = 1/2BC ; b, AB = AE ; c, Gọi M là trung điểm của BE . Tính góc CHM
cho tam giác abc vuông tại a trên tia đối của ab lấy am sao cho ab=am
a/chứng minh tam giác abc = tam giác amc
b/kẻ ah vuông góc vói bc tại h ak vuông góc mc tại k chứng minh bh =mk
c/ chứng minh bm song song vói hk
d/ CMR: ac^2+hb^2=am^2+kc^2
(chỉ làm câu d, có thể sử dụng đáp án của câu a, b, c)
Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC
Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?
Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.
Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE
Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF
Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!
cho tam giác ABC cân tại A. kẻ AH vuông góc với BC(h thuộc bc). Gọi N là trung điểm của AC
a) So sánh AB và AH
b)Gọi G là giao điểm của AH và BN,M là trung diểm của AB
chứng minh: MC=NB
c)Trên tia đối của tia NB lấy diểm K sao cho NK=NG. CHứng minh AG=CK, từ đó suy ra BC +AG>4MG
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.