\(x^{log_29}=x^2.3^{log_2x}-x^{log_23}\)
giải hộ pt trên với
m.n giải giúp mình vs ạ
a) \(6^x-2^x=32\)
b) \(5^{7^x}=7^{5^x}\)
c) \(\log_x\left(x+1\right)=\log_{1,5}\)
d) \(3^x+3^{-x}=\sqrt[2]{8-x^2}\)
e)\(x^{\log_2\left(9\right)}=x^2\cdot3^{\log_2x}-x^{\log_23}_{ }\)
Lời giải:
a) Vì \(6^x-2^x>0\Rightarrow x>0\)
Xét \(y=6^x-2^x-32\) có \(y'=\ln 6.6^x-\ln 2.2^x>0\forall x>0\) nên hàm $y$ đồng biến trên \(x\in(0,+\infty)\).
Khi đó phương trình \(6^x-2^x=32\) có nghiệm duy nhất $x=2$
b) Có \(5^{7^x}=7^{5^x}\Leftrightarrow \log(5^{7^x})=\log (7^{5^x})\)
\(\Leftrightarrow 7^x\log 5=5^x\log 7=7^{x\frac{\log 5}{\log 7}}\log 7\)
\(\Leftrightarrow 7^{x(1-\frac{\log 5}{\log 7})}=\frac{\log 7}{\log 5}=10^{x\log 7(1-\frac{\log 5}{\log 7})}=10^{x\log(\frac{7}{5})}\)
\(\Leftrightarrow x\log\frac{7}{5}=\log\left ( \frac{\log 7}{\log 5} \right )\)\(\Rightarrow x=\frac{\log\left ( \frac{\log 7}{\log 5} \right )}{\log\frac{7}{5}}\)
d) ĐKXĐ:...........
\(3^x+\frac{1}{3^x}=\sqrt{8-x^2}\Leftrightarrow 9^x+\frac{1}{9^x}+2=8-x^2\)
\(\Leftrightarrow 9^x+\frac{1}{9^x}+x^2=6\)
Giả sử \(x\geq 0\) . Xét hàm \(y=9^x+\frac{1}{9^x}+x^2\) có \(y'=9^x\ln 9-\frac{\ln 9}{9^x}+2x\geq 0\) nên hàm đồng biến trên \(x\in [0,+\infty)\)
Do đó PT \(9^x+\frac{1}{9^x}+x^2=6\) với $x\geq 0$ có nghiệm duy nhất \(x\approx 0,753897\)
---------------------------------------------------------------------------------
Vì hàm \(y\) là hàm chẵn nên $-x$ cũng là nghiệm, do đó tổng kết lại PT có nghiệm là \(x\approx \pm 0,753897\)
e) ĐK: $x>0$
\(\text{PT}\Leftrightarrow x^{\log_29}+x^{\log_23}=x^2.3^{\log_2x}\)
\(\Leftrightarrow x^{2\log_23}+x^{log_23}=x^2.x^{log_23}\Leftrightarrow x^{log_23}(x^{\log_23}+1-x^2)=0\)
\(\Leftrightarrow x^{\log_23}+1-x^2=0\) (do \(x>0\))
Dễ thấy \(x^2>x^{\log_23}\Rightarrow x>1\)
Xét hàm \(y=x^2-x^{\log_23}\Rightarrow y'=2x-\log_23x^{\log_23-1}>0\forall x>1\) nên hàm $y$ là hàm đồng biến
Do đó PT có nghiệm duy nhất $x=2$
c) Có lẽ bạn type thiếu đề
giải pt x-5/2012+x-4/2013=x-3/2014+x-2/2015 giải hộ với
\(\dfrac{x-5}{2012}+\dfrac{x-4}{2013}=\dfrac{x-3}{2014}+\dfrac{x-2}{2015}\)
\(\Rightarrow\left(\dfrac{x-5}{2012}-1\right)+\left(\dfrac{x-4}{2013}-1\right)=\left(\dfrac{x-3}{2014}-1\right)+\left(\dfrac{x-2}{2015}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}=\dfrac{x-2017}{2014}+\dfrac{x-2017}{2015}\)
\(\Leftrightarrow\dfrac{x-2017}{2012}+\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}-\dfrac{x-2017}{2015}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\right)=0\)
\(\Rightarrow x-2017=0\Leftrightarrow x=2017\)
Vậy x = 2017
1) Giải phương trình:
\(4\log_2^2x+x\log_2\left(x+2\right)=2\log_2x\left[x+\log_2\left(x+2\right)\right]\)
2) Tìm tất cả bộ hai số thực \(\left(x;y\right)\) thỏa mãn đẳng thức:
\(x^{\log_2x}+4^y+\left(x-5\right)2^{y+1}+57=18x\)
Giải hộ mình với: Giải pt
18(x+1)(x+2)(x+5)(2x+5)=(19/4)x^2
Ai giải hộ emm với ? Giải pt 1/x^2+1/(x+1)^2=15
(x+2).(x+3).(x+4).(x+5) = 24
ai giải hộ mình pt này với
a , nếu bạn chú ý bạn sẽ nhận ra đặc điểm của câu toán này
( x+2)(x+5)(x+4)(x+3) = 24
<=> (x2 + 5x + 2x + 10)( x2 + 3x+4x+12 ) = 24
<=> ( x2 +7x+10)(x2+7x+12) = 24
Đặt x2 + 7x = t
Thay t vào phương trình , ta có
( t + 10)(t+12) = 24
<=> t2 + 12t + 10t + 120 - 24 = 0
<=> t2 + 22t + 96 = 0
<=> t2 + 6t + 16t + 96 = 0
<=> t( t+6)+16(t+6) = 0
<=> (t+16)(t+6) = 0
=> t+ 16 = 0 => t= -16
hoặc t+6=0 => t= - 6
rồi từ đó giải phương trình x2+ 7x = -16 và phương trình x2+7x = -6
x là tất cả các giá trị tìm được
x-2.3=4.5+x
Giải hộ ạ
x - 6 = 20 + x
x - x = 6 + 20
=> 0 = 26
=> Không có giá trị của x
1/1.2 +1/2.3 +1/3.4+...+1/x(x+1)=14/15 làm hộ mik với ạ mình đang cần gấp ( nhớ có lời giải )
\(1-\dfrac{1}{x+1}=\dfrac{14}{15}\)
\(\dfrac{x+1-1}{x+1}=\dfrac{14}{15}\)
\(\dfrac{x}{x+1}=\dfrac{14}{15}\)
\(15x=14x+14\)
\(x=14\)
tổng tất cả các nghiệm pt:
a, \(log_2\left(x+1\right)+log_2x=1\)
b, \(log_{\dfrac{1}{3}}^2\left(4x\right)-5log_3\left(2x\right)=5\)
c, \(log_2\left(x-1\right)+log_2\left(x-2\right)=log_5125\)
a:
ĐKXĐ: x+1>0 và x>0
=>x>0
=>\(log_2\left(x^2+x\right)=1\)
=>x^2+x=2
=>x^2+x-2=0
=>(x+2)(x-1)=0
=>x=1(nhận) hoặc x=-2(loại)
c: ĐKXĐ: x-1>0 và x-2>0
=>x>2
\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)
=>\(\Leftrightarrow x^2-3x+2=8\)
=>x^2-3x-6=0
=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)