CMR với mọi x thuộc R thì biểu thức(1-2x)(x-1)-5 luôn nhận giá trị âm
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
a) Tam thức \(f\left(x\right)=x^2+2\left(m-1\right)+m^2-3m+4\) không âm với mọi giá trị x
b) Có bao nhiêu giá trị nguyên của tham số m để mọi x thuộc R biểu thức \(f\left(x\right)=x^2+\left(m+2\right)x+8m+1\) luôn nhận giá trị dương
c) Tìm tất cả các giá trị m để biểu thức \(f\left(x\right)=x^2+\left(m+1\right)x+2m+7>0\forall x\in R\)
Cho đa thức P= 2x(x+y-1) + y^2 + 1
a) Tính giá trị của P vs x=-5 ; y=3 ; b) . CMR : P luôn nhận giá trị ko âm vs mọi x,y
Cho đa thức P = 2x(x + y - 1) + y2 + 1
a. Tính giá trị của P với x = -5; y = 3b. Chứng minh rằng P luôn luôn nhận giá trị không âm với mọi x, y
3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)
Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y
Chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi giá trị của biến:
a) (-1/4)x^2 + x - 2
b) (1-2x)(x-1) - 5
c) -3x^2 - 6x - 9
cảm ơn các bạn nhiều
\(-\frac{1}{4}x^2+x-2\)
\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)
\(=-\left(\frac{1}{2}x-1\right)^2-1\)
Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)
Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến
\(\left(1-2x\right)\left(x-1\right)-5\)
\(=x-1-2x^2+2x-5\)
\(=-2x^2+3x-6\)
\(=-2\left(x^2-2\cdot\frac{3}{4}x+\frac{9}{16}\right)-\frac{39}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\)
Mà \(\left(x-\frac{3}{4}\right)^2\ge0\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}< 0\)
Vậy \(\left(1-2x\right)\left(x-1\right)-5\) luôn nhận giá trị âm với mọi giá trị của biến
CMR các biểu thức sau luôn nhận giá trị âm với mọi x
\(-5-\left(x-1\right)\left(x+2\right)\)
giải chi tiết giúp mình nhé
Chứng minh rằng đa thức \(\dfrac{x^2+x+1}{-2x^2+2x-2}\) luôn nhận giá trị âm với mọi x
Đặt \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}\)
\(x^2+x+1=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)
\(-2x^2+2x-2\)
\(=-2\left(x^2-x+1\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}< 0\forall x\)
Do đó: \(A=\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)
\(\dfrac{x^2+x+1}{-2x^2+2x-2}=\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}\)
Ta thấy:
\(x^2+x+1\\=x^2+2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x+\dfrac12\right)^2+\dfrac34\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
hay \(x^2+x+1>0\forall x\) (1)
Lại có:
\(x^2-x+1\\=x^2-2\cdot x\cdot\dfrac12+\left(\dfrac12\right)^2-\left(\dfrac12\right)^2+1\\=\left(x-\dfrac12\right)^2+\dfrac34\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
hay \(x^2-x+1>0\forall x\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x^2+x+1}{x^2-x+1}>0\forall x\)
\(\Rightarrow\dfrac{x^2+x+1}{-2\left(x^2-x+1\right)}< 0\forall x\)
hay đa thức \(\dfrac{x^2+x+1}{-2x^2+2x-2}< 0\forall x\)
\(\text{#}Toru\)
cho đa thức P=2x(x+y-1)+y^2+1
tính giá trị của P với x= -5,y=3chứng minh P luôn luôn nhận giá trị không âm với mọi x,y1.Thay x=5,y=3 vào đa thức P,ta được:
2x(x+y-1)+y^2+1
=2.5(2+3-1)+3^2+1
=10.4+9+1
=40+(9+1)
=50
.Thay x=5,y=3 vào đa thức P,ta được:
2x(x+y-1)+y^2+1
=2.5(2+3-1)+3^2+1
=10.4+9+1
=40+(9+1)
=50
CMR: Các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến:
A=x2 -x+1
B=(x-2).(x-4)+3
C=2x2-4xy+4y2+2x+5
A = x2 - x + 1
A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)
A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
B = (x - 2)(x - 4) + 3
B = x2 - 4x - 2x + 8 + 3
B = x2 - 6x + 11
B = x2 - 2.3.x + 9 + 3
B = \(\left(x-3\right)^2+3>0\)
C = 2x2 - 4xy + 4y2 + 2x + 5
C = (x2 - 4xy + 4y2) + x2 + 2x + 5
C = (x - 2y)2 + (x2 + 2x + 1) + 4
C = (x - 2y)2 + (x + 1)2 + 4
Xét biểu thức C thấy :
Có 2 hạng tử không âm (vì là bình phương)
Vậy C > 0