Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dorae mon
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 9:44

loading...

 

Dorae mon
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 9:38

b: Sửa đề: AO vuông góc BI

Gọi M là trung điểm của IC

Xét ΔIHC có IO/IH=IM/IC

nên OM//HC và OM=1/2HC

=>OM vuông góc AH

Xet ΔAHM có

MO,HI là đường cao

MO cắt HI tại O

=>O là trực tâm

=>AO vuông góc HM

=>AO vuông góc BI

Phát Lê Tấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 20:48

1.4:

a: CH=16^2/24=256/24=32/3

BC=24+32/3=104/3

AC=căn 32/3*104/3=16/3*căn 13

b: BC=12^2/6=24

AC=căn 24^2-12^2=12*căn 3

CH=24-6=18

Ngô Thành Chung
31 tháng 8 2021 lúc 22:18

cos2x - (2m + 1)cosx + m + 1 = 0

⇔ 2cos2x - (2m + 1).cosx = 0

⇔ \(\left[{}\begin{matrix}cosx=0\left(1\right)\\2cosx=2m+1\left(2\right)\end{matrix}\right.\)

(1) ⇔ \(x=\dfrac{\pi}{2}+k\pi\) với k thuộc Z. Mà \(x\in\left(\dfrac{\pi}{2};2\pi\right)\)

⇒ x = \(\dfrac{3\pi}{2}\)

Như vậy đã có 1 nghiệm trên \(\left(\dfrac{\pi}{2};2\pi\right)\) đó là x = \(\dfrac{3\pi}{2}\). Bây giờ cần tìm m để (2) có 2 nghiệm phân biệt trên \(\left(\dfrac{\pi}{2};2\pi\right)\) và trong 2 nghiệm đó không có nghiệm x = \(\dfrac{3\pi}{2}\). Tức là x = \(\dfrac{3\pi}{2}\) không thỏa mãn (2), tức là

2m + 1 ≠ 0 ⇔ \(m\ne-\dfrac{1}{2}\)

(2) ⇔ \(2.\left(2cos^2\dfrac{x}{2}-1\right)=2m+1\)

⇔ \(4cos^2\dfrac{x}{2}=2m+3\)

Do x \(\in\left(\dfrac{\pi}{2};2\pi\right)\) nên \(\dfrac{x}{2}\in\left(\dfrac{\pi}{4};\pi\right)\) nên cos\(\dfrac{x}{2}\) ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)

Đặt cos\(\dfrac{x}{2}\) = t ⇒ t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\). Ta được phương trình : 4t2 = 2m + 3

Cần tìm m để [phương trình được bôi đen] có 2 nghiệm t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)

Dùng hàm số bậc 2 là ra. Nhớ kết hợp điều kiện \(m\ne-\dfrac{1}{2}\)

 

Dương Hoàng Nam
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 18:44

\(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}=\tan\alpha\)

\(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{AC}=\cot\alpha\)

\(\tan\alpha\cot\alpha=\dfrac{AC}{AB}\cdot\dfrac{AB}{AC}=1\)

\(\sin^2\alpha+\cos^2\alpha=\dfrac{AC^2}{BC^2}+\dfrac{AB^2}{BC^2}=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\left(pytago\right)\)

Diệu Hà Thịnh
Xem chi tiết

a:

Xét ΔABC vuông tại A có \(cosABC=\frac{BA}{BC}\)

=>\(\frac{6}{BC}=\frac35\)

=>\(BC=6\cdot\frac53=10\left(\operatorname{cm}\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=100-36=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

c: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC

=>ΔIAC cân tại I

=>\(\hat{IAC}=\hat{ICA}\)

AEHD là hình chữ nhật

=>\(\hat{AED}=\hat{AHD}\)

\(\hat{AHD}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{AED}=\hat{ABC}\)

\(\hat{IAC}+\hat{AED}=\hat{ICA}+\hat{ABC}=90^0\)

=>AI⊥ED tại K

Anhngo
Xem chi tiết
Lê Anh Đức
30 tháng 12 2020 lúc 5:49

556667576

Khách vãng lai đã xóa
Ngọc Lan
Xem chi tiết
Nguyễn Trần Thành Đạt
6 tháng 5 2021 lúc 22:09

Câu 4:

a) nC2H6O=0,3(mol)

PTHH: C2H6O + 3 O2 -to-> 2 CO2 + 3 H2O

0,3___________0,9_____0,6(mol)

=>V(CO2,đktc)=0,6 x 22,4= 13,44(l)

b) V(kk,dktc)=V(O2,dktc) . 100/20 = (0,9.22,4).5=100,8(l)

Nguyễn Trần Thành Đạt
6 tháng 5 2021 lúc 22:12

Câu 5:

C2H6O + 3 O2 -to-> 2 CO2 + 3 H2O

nH2O=0,9(mol)

=> nCO2= 2/3. 0,9=0,6(mol)

a) V(CO2,đktc)=0,6.22,4=13,44(l)

b) Vkk=5.V(O2,dktc)= 5.(0,9.22,4)= 100,8(l)

Nguyễn Trần Thành Đạt
6 tháng 5 2021 lúc 21:49

Em cần hỗ trợ cụ thể bài nào em?

bé thỏ 123
16 tháng 5 2022 lúc 5:59

xin lui khó qué tr