Giải giúp e vs
giúp e giải
và vẽ hình giúp e vs ạ
giúp e giải và vẽ hình giúp e vs ah
b: Sửa đề: AO vuông góc BI
Gọi M là trung điểm của IC
Xét ΔIHC có IO/IH=IM/IC
nên OM//HC và OM=1/2HC
=>OM vuông góc AH
Xet ΔAHM có
MO,HI là đường cao
MO cắt HI tại O
=>O là trực tâm
=>AO vuông góc HM
=>AO vuông góc BI
giúp e vẽ hình vs lời giải hợp lý vs ạ, e cảm ơn
1.4:
a: CH=16^2/24=256/24=32/3
BC=24+32/3=104/3
AC=căn 32/3*104/3=16/3*căn 13
b: BC=12^2/6=24
AC=căn 24^2-12^2=12*căn 3
CH=24-6=18
Giải giúp e vs ạ
E cần gấp
cos2x - (2m + 1)cosx + m + 1 = 0
⇔ 2cos2x - (2m + 1).cosx = 0
⇔ \(\left[{}\begin{matrix}cosx=0\left(1\right)\\2cosx=2m+1\left(2\right)\end{matrix}\right.\)
(1) ⇔ \(x=\dfrac{\pi}{2}+k\pi\) với k thuộc Z. Mà \(x\in\left(\dfrac{\pi}{2};2\pi\right)\)
⇒ x = \(\dfrac{3\pi}{2}\)
Như vậy đã có 1 nghiệm trên \(\left(\dfrac{\pi}{2};2\pi\right)\) đó là x = \(\dfrac{3\pi}{2}\). Bây giờ cần tìm m để (2) có 2 nghiệm phân biệt trên \(\left(\dfrac{\pi}{2};2\pi\right)\) và trong 2 nghiệm đó không có nghiệm x = \(\dfrac{3\pi}{2}\). Tức là x = \(\dfrac{3\pi}{2}\) không thỏa mãn (2), tức là
2m + 1 ≠ 0 ⇔ \(m\ne-\dfrac{1}{2}\)
(2) ⇔ \(2.\left(2cos^2\dfrac{x}{2}-1\right)=2m+1\)
⇔ \(4cos^2\dfrac{x}{2}=2m+3\)
Do x \(\in\left(\dfrac{\pi}{2};2\pi\right)\) nên \(\dfrac{x}{2}\in\left(\dfrac{\pi}{4};\pi\right)\) nên cos\(\dfrac{x}{2}\) ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)
Đặt cos\(\dfrac{x}{2}\) = t ⇒ t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\). Ta được phương trình : 4t2 = 2m + 3
Cần tìm m để [phương trình được bôi đen] có 2 nghiệm t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)
Dùng hàm số bậc 2 là ra. Nhớ kết hợp điều kiện \(m\ne-\dfrac{1}{2}\)
giải giúp e vs ạ e cần gấp.
\(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}=\tan\alpha\)
\(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{AC}=\cot\alpha\)
\(\tan\alpha\cot\alpha=\dfrac{AC}{AB}\cdot\dfrac{AB}{AC}=1\)
\(\sin^2\alpha+\cos^2\alpha=\dfrac{AC^2}{BC^2}+\dfrac{AB^2}{BC^2}=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\left(pytago\right)\)
giải giúp e vs ạ e đag gấppp
**BÀI 5:** Cho tam giác \(ABC\) vuông tại \(A\) \((AB < AC)\), đường cao \(AH\)
a) Cho \(AB = 6 \, \text{cm}\) và \(\cos\) góc \(ABC = \frac{3}{5}\). Tính \(BC, AC, BH\)
b) Kẻ \(HD \perp AB\) tại \(D\), \(HE \perp AC\) tại \(E\). Chứng minh \(AD \cdot AB = AE \cdot AC\)
c) Gọi \(I\) là trung điểm \(BC\), \(AI\) cắt \(DE\) tại \(K\). Chứng minh rằng \(AK \perp ED\)
a:
Xét ΔABC vuông tại A có \(cosABC=\frac{BA}{BC}\)
=>\(\frac{6}{BC}=\frac35\)
=>\(BC=6\cdot\frac53=10\left(\operatorname{cm}\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=100-36=64=8^2\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH=\frac{6^2}{10}=3,6\left(\operatorname{cm}\right)\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên IA=IC
=>ΔIAC cân tại I
=>\(\hat{IAC}=\hat{ICA}\)
AEHD là hình chữ nhật
=>\(\hat{AED}=\hat{AHD}\)
mà \(\hat{AHD}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{AED}=\hat{ABC}\)
\(\hat{IAC}+\hat{AED}=\hat{ICA}+\hat{ABC}=90^0\)
=>AI⊥ED tại K
Giải giúp e vs ạ ,e đang cần gấp
Giải giúp e vs ạ e cần gấp quá
Câu 4:
a) nC2H6O=0,3(mol)
PTHH: C2H6O + 3 O2 -to-> 2 CO2 + 3 H2O
0,3___________0,9_____0,6(mol)
=>V(CO2,đktc)=0,6 x 22,4= 13,44(l)
b) V(kk,dktc)=V(O2,dktc) . 100/20 = (0,9.22,4).5=100,8(l)
Câu 5:
C2H6O + 3 O2 -to-> 2 CO2 + 3 H2O
nH2O=0,9(mol)
=> nCO2= 2/3. 0,9=0,6(mol)
a) V(CO2,đktc)=0,6.22,4=13,44(l)
b) Vkk=5.V(O2,dktc)= 5.(0,9.22,4)= 100,8(l)
Em cần hỗ trợ cụ thể bài nào em?
Giải giúp e vs