Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
9D-21-Bùi Quang Khải-ĐH
Xem chi tiết
ILoveMath
27 tháng 2 2022 lúc 19:37

1, \(\Delta=\left(-11\right)^2-4.1.38=121-152=-31< 0\)

\(\Rightarrow\) pt vô nghiệm

2, \(\Delta=71^2-4.6.175=5041-4200=841\)

\(x_1=\dfrac{-71+\sqrt{841}}{2.6}=\dfrac{-71+29}{12}=\dfrac{-42}{12}=-\dfrac{7}{2}\)

\(x_2=\dfrac{-71-\sqrt{841}}{2.6}=\dfrac{-71-29}{12}=\dfrac{-10}{12}=-\dfrac{25}{3}\)

3, \(\Delta=\left(-3\right)^2-5.27=9-135=-126< 0\)

⇒ pt vô nghiệm

4, \(\Delta=15^2-\left(-30\right)\left(-7,5\right)=225-225=0\)

\(\Rightarrow x_1=x_2=\dfrac{-30}{2.\left(-30\right)}=\dfrac{1}{2}\)

5, \(\Delta'=\left(-8\right)^2-4.17=64-68=-4\)

⇒ pt vô nghiệm

6, \(\Delta=4^2-4.1.\left(-12\right)=16+48=64\)

\(x_1=\dfrac{-4+\sqrt{64}}{2.1}=\dfrac{-4+8}{2}=\dfrac{4}{2}=2\)

\(x_2=\dfrac{-4-\sqrt{64}}{2.1}=\dfrac{-4-8}{2}=\dfrac{-12}{2}=-6\)

Ngọc Dung
Xem chi tiết
ILoveMath
31 tháng 10 2021 lúc 15:48

1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)

2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)

3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)

5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)

6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)

7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 15:48

\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)

Bình Minh Nguyễn Hữu
Xem chi tiết

mik ghi kết quả thôi đc ko

Hắc Hoàng Thiên Sữa
22 tháng 6 2021 lúc 8:28

Câu 1:

A=2+5x²−3x³+4x²−2x−x²+6x5A=2+5x²-3x³+4x²-2x-x²+6x5

A=6x5−3x³+(5x2+4x2−x2)−2x+2A=6x5-3x³+(5x2+4x2-x2)-2x+2

A=6x5−3x3+8x2−2x+2

 Bậc của đa thức là bậc 5

...............

B=3x5y3−4x4y3+2x4y3+7xy²−3x5y3

B=(3x5y3−3x5y3)+(−4x4y3+2x4y3)+7xy

B=−2x4y3+7xy2

Bậc của đa thức là bậc 7

................

Câu 2:

a)8x5−6x2+7x−3x5+2x2+

=(8x5−3x5)+(−6x2+2x2)+7x+15

=5x5−4x2+7x+15

..................

b)=-9+5x7-6x2-11x7+7x2+x5

=(5x7-11x7)+x5+(-6x2+7x2)-9

=−6x7+x5+x2−9

Tiên Võ
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 23:12

Bài 2: 

a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)

b: \(5x^2+5xy-x-y\)

\(=5x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(5x-1\right)\)

c:\(-6x^2+7x-2\)

\(=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(-3x+2\right)\)

Lấp La Lấp Lánh
15 tháng 10 2021 lúc 23:18

1.

a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

2.

a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)

c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)

3.

b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)

4.

a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Nguyễn Quốc Việt
Xem chi tiết
 .
21 tháng 9 2019 lúc 18:57

b) \(6x^2-13x+5=6x^2-3x-10x+5\)

\(=3x\left(2x-1\right)-5\left(2x-1\right)\)

\(=\left(2x-1\right).\left(3x-5\right)\)

 .
21 tháng 9 2019 lúc 19:01

d) \(3x^2-11x+6=3x^2-9x-2x+6\)

\(=3x\left(x-3\right)-2\left(x-3\right)\)

\(=\left(x-3\right)\left(3x-2\right)\)

e) \(-7x^2+11x+6=-7x^2+14x-3x+6\)

\(=-7x\left(x-2\right)-2\left(x-2\right)\)

\(=\left(x-2\right)\left(-7x-2\right)\)

\(6x^2-13x+5=6x^2-3x-10x+5\)

\(=3x\left(2x-1\right)-5\left(2x-1\right)\)

\(=\left(2x-1\right).\left(3x-5\right)\)

Minh Lê
Xem chi tiết
RashFord:)
1 tháng 5 2022 lúc 19:34

\(âP\left(x\right)=13x^3+4x^2-11x-2\)

\(b.Q\left(x\right)=x^3+9x-5\)
\(c.A\left(x\right)=14x^3-x^2+10x+14\)
\(d.B\left(x\right)=2x^2+x+3\)

trung dũng trần
Xem chi tiết
trung dũng trần
27 tháng 7 2019 lúc 20:11

somebody help me 

Nguyễn Văn Tuấn Anh
27 tháng 7 2019 lúc 20:44

\(1,2x^2-3x-2\) 

\(=2x^2-4x+x-2\)

\(=2x\left(x-2\right)+\left(x-2\right)\) 

\(=\left(2x+1\right)\left(x-2\right)\) 

\(2,4x^2-7x-2\)

\(=4x^2-8x+x-2\) 

\(=4x\left(x-2\right)+x-2\)

\(\left(4x+1\right)\left(x-2\right)\)

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2021 lúc 10:50

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

Cíuuuuuuuuuu
Xem chi tiết
ILoveMath
21 tháng 8 2021 lúc 11:17

bạn vừa đăng câu này r mà

Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 14:24

a: Ta có: \(\left(2x-3\right)^2+6\left(2x-1\right)=7\)

\(\Leftrightarrow\left(2x-3\right)^2+6\left(2x-1\right)-7=0\)

\(\Leftrightarrow4x^2-12x+9+12x-6-7=0\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

hay \(x\in\left\{1;-1\right\}\)

b: Ta có: \(x^2-7x+10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)