Cho tam giác ABC có góc B = 2 lần góc C. Chứng minh rằng : AC2 = AB(AB + BC).
Cho tam giác ABC có góc B = 2 lần góc C. Chứng minh rằng : AC2 = AB(AB + BC).
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho Tam Giác ABC có AB=21cm , AC =28cm , BC=35cm ., vẽ đường cao AH
a) Chứng minh tam giác ABC vuông
b) Chứng minh tam giác HBA đồng dạng với tam giác HAC
c) Chứng minh AC2=BH.BC
d) Đường phân giác góc AM . Tính BM và CM
a)Ta có:`AB^2+AC^2=21^2+28^2=1225`
Mà `BC^2=1225`
Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`
`=>` tam giác ABC vuông
b)Vì BAC vuông tại A
`=>hat{BAC}=90^o`
`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`
Xét tam giác HBA và tam giác HAC có"
`hat{HAB}=hat{HCA}`(CMT)
`hat{BHA}=hat{HAC}=90^o`
`=>` tam giác HBA đồng dạng với tam giác HAC(gg)
c)Xét tam giác ACH và tam giác BAC ta có:
`hat{AHC}=hat{BAC}=90^o`
`hat{ACB}` chung
`=>DeltaACH~DeltaBAC(gg)`
`=>(AC)/(BH)=(BC)/(AC)`
`=>AC^2=BH.BC`.
d)Đường phân góc gì nhỉ?
Cho tam giác ABC, có góc B lớn hơn 90 độ. AB = 1⁄2 AC. Chứng minh rằng:
a) BC > AB
b) Góc A nhỏ hơn 2 lần góc C.
Cho tam giác ABC có ba góc nhọn và AH là đường cao
a, Chứng minh: A B 2 + C H 2 = A C 2 + B H 2
b, Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. A B 2 + A C 2 = B C 2 2 + 2 A M 2
2. A C 2 - A B 2 = 2 B C . H M (với AC > AB)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Câu1
Từ một điểm tuỳ ý trên tam giác ABC, kẻ oa1, ob1, oc1 lần lượt vuông góc với bc, ca, ab. Chứng minh rằng ab 2/1+bc2/1+ca2/1=ac2/1+ba2/1+cb2/1
Câu 2
Cho tấm giác abc cân tại a, biết góc a=20 độ, bc=2cm. Trên cạnh ác lấy điểm d sao cho góc cbd=60 độ. Chứng minh ad=căn bậc hai của 2
Câu 1 : mình chỉ cách để cậu sao chéo link này nha .Đầu tiên bạn ấn chuột phải . Rồi ấn zô chữ in , sau đó cậu kéo xuống câu hỏi của cậu , xong cậu sao chép cái link ở dưới này nhá . Ok . Olm ko chụp ảnh đc .
https://scontent-sin6-2.xx.fbcdn.net/v/t1.15752-9/92245240_146128493508405_8939038888257650688_n.jpg?_nc_cat=105&_nc_sid=b96e70&_nc_ohc=X9iGs2rfBIcAX-BKDc4&_nc_ht=scontent-sin6-2.xx&oh=6f79129823e83db81e1c7ec56963fb48&oe=5EAE20C6
Cho tam giác ABC có góc A bằng 135 độ. Biết BC = 2; AB = \(\sqrt{2}\). Chứng minh rằng góc C = 2 lần góc B
Cho tam giác ABC vuông tại A, có AB=12cm,AC=16cm.Kẻ đường cao AM. Kẻ ME ⊥ AB
a)Tính BC, góc B, góc C
b) Tính AM,BM
c)Chứng minh AE.AB=AC2 _ MC2
a, theo pytago\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)
theo hệ thức lượng
\(=>AM.BC=AB.AC=>AM=\dfrac{12.16}{20}=9,6cm\)
theo ct lượng giác\(=>\sin C=\dfrac{AM}{AC}=\dfrac{9,6}{16}=>\angle\left(C\right)\approx36^o52'=>\angle\left(B\right)=53^08'\)
b, AM ý a, tính rồi,
theo hệ thức lượng \(=>AB^2=BM.BC=>BM=\dfrac{12^2}{20}=7,2cm\)
c,theo hệ thứ lượng \(=>AE.AB=AM^2\left(1\right)\)
pytago\(AC^2-MC^2=AM^2\left(2\right)\)
(1)(2)=>đpcm
cho tam giác abc có ab=4cm, bc=5cm.ca=6cm. chứng minh góc b= 2 lần góc c
cosB = (AB^2 +BC^2-AC^2)/(2.AB.BC) = (4^2 +5^2 -6^2)/(2.4.5) = 1/8
=> ^B = 92°
cosC = (CA^2 +CB^2 - AB^2)/(2.CA.CB) = (6^2+5^2-4^2)/(2.6.5)=3/4
=> ^C = 46°
Vậy ^B = 2^C (ĐPCM)