Áp dụng hằng đẳng thức rồi so sánh : C=1+8(3^2+1)(3^4+1)(3^8+1) và D=(3^3)^5+(3^5)^3
Giúp mình vs ạ mai mình học rùi
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức :
a) A = 1999.2001 và B = 20002
b) A = 2^16 và B = (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)
c) A = 2011.2013 và B = 2012^2
d) A = 4(3^2 + 1)(3^4 + 1)....(3^64 + 1) và B = 3^128 - 1
áp dụng hằng đẳng thức rồi rút gọn biểu thức sau:(4x-3)(3x+2)-(6x+1)(2x+5)+1
\(\left(4x-3\right)\left(3x+2\right)-\left(6x+1\right)\left(2x+5\right)+1\)
\(=\left(12x^2-9x+8x-6\right)-\left(12x^2+2x+30x+5\right)+1\)
\(=\left(-x-32x\right)+\left(-6-5+1\right)=-33x-10\)
so sánh hai số bằng cách vận dụng hằng đẳng thức
A = 4(32+1) (34+1).....(364+1) và B = 3128 -1
\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{128}-1\right)< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)
\(\Rightarrow A< B\)
Bài 3: Áp dụng đẳng thức trên thực hiện phép nhân bằng cách cho a, b là một số cho trước. ( mỗi ý 10 câu, rồi tính...) Hãy tính:
1) ( x+3)( x+ 5) =
2) (x+6)(x+2)
3) (x+3)(x+7)
4) ( x- 3)( x-5)
5) (x-4)(x-9)
6) (x-10)(x-12)
7) (x+3)(x-5)
8) (x_8)(x+3)
9) (x+8)(x-4) 10) ( 2x-1)( 3x-2)
11)(3x+1)( 5x-3)
ý bạn là nhân đa thức với đa thức hay sao ạ?
So sánh 2 số bằng cách vận dụng hàng đẳng thức
a)A=2^16 và B=( 2+1)(2^2+1)(2^4+1)(2^8+1)
b)A=4(3^2+1)(3^4+1)...(3^64+1)và B=3^128 -1
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Só sánh hai số bằng cách vận dụng hằng đẳng thức:
a, A=1999.2001 và B=20002
b,A=126 và B=(2+1)(22+1)(24+1)(28+1)
c,A=2011.2013 và B=20122
d,A=4(32+1)(34+1)....(364+1) và B=3128 - 1
a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)
=> \(A< B\)
b) \(A=12^6\)
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
=> \(A>B\)
c) \(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)
\(B=2012^2\)
=> \(A< B\)
d) \(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)..\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^8-1\right).....\left(3^{64}+1\right)}{2}\)
\(=\frac{3^{128}-1}{2}\)
\(B=3^{128}-1\)
=> \(A< B\)
So sánh hai số bằng cách vận dụng hằng đẳng thức:a) A = 1999.2001 và B = 20002 b) A = 216 và B (2 +1)(22 +1)(24 +1)(28 +1) c) A = 2011.2013 và B = 20122 d) A = 4(32 +1)(34 +1)...(364 +1) và B = 3128 1
bài 4:áp dụng hằng đẳng thức đáng nhớ
a,(x-1).(x2+x+1)
b,(x-5).(x2+5x+25)
c,(2x+3).(4x2-6x+9)
d,(x+1/2).(x2-1/2x+1
giúp với ạ đang cần gấp