Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chiến binh hòa bình
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 4 2022 lúc 16:08

Xét hàm:

\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+...+\dfrac{1}{x^{100}}\)

\(\Rightarrow f'\left(x\right)=-\dfrac{1}{x^2}-\dfrac{2}{x^3}-\dfrac{3}{x^4}-...-\dfrac{100}{x^{101}}=-P\) (1)

Mặt khác \(f\left(x\right)\) là tổng cấp số nhân với \(\left\{{}\begin{matrix}n=100\\u_1=\dfrac{1}{x}\\q=\dfrac{1}{x}\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=u_1.\dfrac{1-q^{100}}{1-q}=\dfrac{1}{x}.\dfrac{1-\dfrac{1}{x^{100}}}{1-\dfrac{1}{x}}=\dfrac{1-\dfrac{1}{x^{100}}}{x-1}=\dfrac{x^{100}-1}{x^{101}-x^{100}}\)

\(\Rightarrow f'\left(x\right)=\dfrac{\left(x^{100}-1\right)'\left(x^{101}-x^{100}\right)-\left(x^{101}-x^{100}\right)'\left(x^{100}-1\right)}{\left(x^{101}-x^{100}\right)^2}=-\dfrac{x^{101}-101x^{100}+100}{x^{101}\left(x-1\right)^2}\) (2)

(1);(2) \(\Rightarrow P=\dfrac{x^{101}-101x^{100}+100}{x^{101}\left(x-1\right)^2}\)

Vũ Thị Nhàn
Xem chi tiết
Viên Tiến Duy
13 tháng 11 2023 lúc 19:44

C= 53+55+... +5101

⇔25C= 55+ 57+...+5103

⇔25C-C=(55+57+...+5103) - ( 53+55+...+5101)

⇔24C=5103  - 53

⇔C=(5103 - 53 ) / 24

CMTT : D=1 + 32+34+36+ ... + 3100

⇔9D= 32+34+36+38+...+ 3102

⇔9D-D=(32+34+36+38+...+ 3102) - (1 + 32+34+36+ ... + 3100)
⇔8D=3102-1

⇔D=(3102-1)/8

Tiến Dũng Trương
13 tháng 11 2023 lúc 19:47

Để thu gọn biểu thức \( C D \), chúng ta cần tính giá trị của \( C \) và \( D \) trước.

Đầu tiên, ta tính giá trị của \( C \):
\[ C = 5^{3} + 5^{5} + \ldots + 5^{101} \]

Đây là một dãy số hình học với công bội là 5. Ta có thể sử dụng công thức tổng của dãy số hình học để tính tổng này. Công thức tổng của dãy số hình học là:
\[ S = \frac{a(1 - r^n)}{1 - r} \]

Trong đó:
- \( S \) là tổng của dãy số hình học
- \( a \) là số hạng đầu tiên của dãy
- \( r \) là công bội của dãy
- \( n \) là số lượng số hạng trong dãy

Áp dụng công thức này vào biểu thức \( C \), ta có:
\[ C = \frac{5^3(1 - 5^{99})}{1 - 5} \]

Tiếp theo, ta tính giá trị của \( D \):
\[ D = 1 + 3^2 + 3^4 + \ldots + 3^{100} \]

Đây là một dãy số hình học với công bội là 9. Ta cũng có thể sử dụng công thức tổng của dãy số hình học để tính tổng này. Áp dụng công thức này vào biểu thức \( D \), ta có:
\[ D = \frac{1(1 - 3^{100})}{1 - 3^2} \]

Cuối cùng, để thu gọn biểu thức \( C D \), ta tính giá trị của \( C D \) bằng cách nhân giá trị của \( C \) và \( D \):
\[ C D = \frac{5^3(1 - 5^{99})}{1 - 5} \times \frac{1(1 - 3^{100})}{1 - 3^2} \]

Bạn có thể tính giá trị cuối cùng của biểu thức \( C D \) bằng cách thực hiện các phép tính trên.

Vũ Thị Nhàn
13 tháng 11 2023 lúc 20:02

tôi quên chưa thêm dấu + ở C+D

Vũ Thị Nhàn
Xem chi tiết
Kiều Vũ Linh
14 tháng 11 2023 lúc 8:21

C = 5³ + 5⁵ + ... + 5¹⁰¹

⇒ 25C = 5⁵ + 5⁷ + ... + 5¹⁰¹

⇒ 24C = 25C - C

= (5⁵ + 5⁷ + ... + 5¹⁰³) - (5³ + 5⁵ + ... + 5¹⁰¹)

= 5¹⁰³ - 5⁵

⇒ C = (5¹⁰³ - 5⁵)/24

--------

D = 1 + 3² + 3⁴ + ... + 3¹⁰⁰

⇒ 9D = 3² + 3⁴ + 3⁶ + ... + 3¹⁰²

⇒ 8D = 9D - D

= (3² + 3⁴ + 3⁶ + ... + 3¹⁰²) - (1 + 3² + 3⁴ + ... + 3¹⁰⁰)

= 3¹⁰² - 1

⇒ D = (3¹⁰² - 1)/8

Vũ Thị Nhàn
Xem chi tiết
Vũ Thị Nhàn
13 tháng 11 2023 lúc 20:04

tôi gửi lại, thông cảm

✰Shiba Miyuki✰
Xem chi tiết
nguyễn tuấn thảo
7 tháng 8 2019 lúc 8:42

\(B=1^2+2^2+\cdot\cdot\cdot+100^2\)

\(\Rightarrow B=1\cdot\left(2-1\right)+2\cdot\left(3-1\right)+\cdot\cdot\cdot+100\cdot\left(101-1\right)\)

\(\Rightarrow B=\left(1\cdot2+2\cdot3+\cdot\cdot\cdot+100\cdot101\right)-\left(1+2+\cdot\cdot\cdot+100\right)\)

Đặt A = 1.2 + 2.3 + ... + 100.101

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+\cdot\cdot\cdot+100\cdot101\cdot3\)

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+\cdot\cdot\cdot+100\cdot101\cdot\left(102-99\right)\)

\(\Rightarrow3A=\left(1\cdot2\cdot3+\cdot\cdot\cdot+100\cdot101\cdot102\right)-\left(1\cdot2\cdot3+\cdot\cdot\cdot+99\cdot100\cdot101\right)\)

\(\Rightarrow3A=100\cdot101\cdot102\)

\(\Rightarrow A=100\cdot101\cdot34\)

\(\Rightarrow A=343400\)

\(\Rightarrow B=A-\left(1+2+\cdot\cdot\cdot+100\right)\)

\(\Rightarrow B=343400-\frac{101\cdot100}{2}\)

\(\Rightarrow B=343400-101\cdot50\)

\(\Rightarrow B=343400-5050\)

\(\Rightarrow B=338350\)

Thảo Nguyễn『緑』
7 tháng 8 2019 lúc 8:21

\(A=3+3^2+3^3+...+3^{100}+3^{101}\)

\(3A=3^2+3^3+3^4+...+3^{101}+3^{102}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}+3^{102}\right)-\left(3+3^2+3^3+...+3^{100}+3^{101}\right)\)

\(2A=3^{102}-3\)

\(A=\frac{3^{102}-3}{2}\)

Tớ chỉ làm được câu A thôi, bạn thông cảm. Với lại tớ không chắc đúng đâu.

=))

Nguyễn Tân Khoa
Xem chi tiết
Trần Dương An
Xem chi tiết
nguyen ba khai
Xem chi tiết
Trần Minh Hoàng
22 tháng 8 2017 lúc 8:54

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\left(101+1\right).100:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)

\(=\frac{5050}{1+1+...+1+1}\)(51 chữ số 1)

\(\frac{5050}{51}\)