Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngân
Xem chi tiết
Đinh Minh Đức
18 tháng 3 2022 lúc 15:59

a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán 

b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm

c. thì.... tớ ko biết

nguyễn bảo quỳnh
Xem chi tiết
Tống Hà Linh
10 tháng 4 2020 lúc 17:07

dsssws

Khách vãng lai đã xóa
Phạm Quang Hưng
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
2 tháng 5 2023 lúc 21:19

`@` `\text {dnv4510}`

`A)`

`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)

`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`

`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`

`= 3x^4+x^3-x^2+2x+7`

`B)`

`P(x)+M(x)=2Q(x)`

`-> M(x)= 2Q(x) - P(x)`

`2Q(x)=2(x^4+x^3-x^2+2x+1)`

`= 2x^4+2x^3-2x^2+4x+2`

`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`

`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`

`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`

`= 2x^3-2x^2+4x-4`

Vậy, `M(x)=2x^3-2x^2+4x-4`

`C)`

Thay `x=-4`

`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`

`= 2*(-64)-2*16-16-4`

`= -128-32-16-4`

`= -180`

`->` `x=-4` không phải là nghiệm của đa thức.

Muichirou Tokitou
Xem chi tiết
Yeutoanhoc
21 tháng 5 2021 lúc 10:17

`M(x)=P(x)+Q(x)`

`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`

`=2x^4+6`

Đặt `M(x)=0`

`<=>2x^4+6=0`

`<=>x^4=-3`(vô lý vì `x^4>=0`)

Muichirou Tokitou
Xem chi tiết
ʚƘεŋşɦїŋ ℌїɱʉɾαɞ‏
22 tháng 5 2021 lúc 9:46

a) Ta có M(x)=P(x)+Q(x)

                     =(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))

                     =\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)

                     =(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)

                     =\(2x^4\)+6

Vậy M(x)=\(2x^4+6\)

b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x

  nên \(2x^4+6\)  \(\ge\)0 với \(\forall\)x

\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x

Vậy M(x) vô nghiệm

Nguyễn Hoàng Phúc
Xem chi tiết
Nguyễn Hữu Trường Hải
13 tháng 5 2020 lúc 19:22

123456

Khách vãng lai đã xóa
Mỹ Tuyềnn
Xem chi tiết
Tt_Cindy_tT
4 tháng 5 2022 lúc 18:52

a, P(x)=5x3+x2-3x+7

Q(x)=-5x3-x2+4x-5(đã thu gọn-bn tự trình bày nha)

b,P(x)=5x3+x2-3x+7

  + 

   Q(x)=-5x3-x2+4x-5

   M(x)=               x-2

P(x)= 5x3 +x2  -3x+7

-

Q(x)=-5x3 - x2 + 4x-5

N(x)=10x3+2x2-7x+12

c, x-2=0

       x=0+2

       x=2

=>Nghiệm bằng 2.

ha nguyen
Xem chi tiết
pourquoi:)
9 tháng 5 2022 lúc 16:38

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

çá﹏๖ۣۜhⒺo╰‿╯²ᵏ⁹
9 tháng 5 2022 lúc 16:45

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

 

Nguyễn Thị Kim Ngân
6 tháng 5 lúc 20:24

Iu cj rose

 

potato
Xem chi tiết
ʚƘεŋşɦїŋ ℌїɱʉɾαɞ‏
25 tháng 5 2021 lúc 20:40

a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2

                   =\(2x^2-2x\)

b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)

                  =x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2

                 =\(2x^3+4x^2+8x-4\)

c) Ta có H(x)=0

\(\Rightarrow\)\(2x^2-2x\)=0

\(\Rightarrow\)2x(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0;1