Cho tam giác ABC vuông tại A có AB = 8 cm ; BC = 10 cm . Vẽ trong tam giác ABC 1 tam giác vuông cân DAB có cạnh huyền AB . Gọi E là trung điểm BC . Tính DE ?
2K5 - IB - Kb nha - FA
#linhlunxinhcute :3
Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông ?
Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông
1) Cho tam giác abc vuông tại a và tam giác a'b'c' vuông tại A' có BC = 10 cm,AC = 8 cm,B'C'= 5cm,A'C' = 4cm.
a) Tính AB,A'B'.
b) cm: tam giác ABC đồng dạng tam giác A'B'C' (Chi tiết + chính xác)
cho tam giác ABC vuông tại A . Có AB bằng 6 cm. AC bằng 8 cm. a tính độ dài cạnh BC và chu vi tam giác ABC . Đường phân giác của góc B cắt AC tại D .Vẽ DH vuông góc BC . [ H thuộc BC ]. CM tam giác ABD = tam giác HBD c CM DA < DC . có vẽ hình nha mọi người
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
Cho tam giác ABC vuông tại A có AB = 6 cm, AC= 8 cm, đường trung tuyến M. Gọi d là đường thẳng vuông góc với AM tại A. Kể BD vuông góc với d tại D, kẻ CE vuông góc với d tại E. a, Chứng minh: tam giác ABC đồng dạng với tam giác CAE. b, Tính CE
a) Sửa đề: Chứng minh ∆ABC ∽ ∆EAC
Giải:
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10 (cm)
Do AM là đường trung tuyến ứng với cạnh huyền BC
⇒ AM = BM = CM = BC : 2
= 10 : 2 = 5 (cm)
∆AMC có AM = CM = 5 (cm)
⇒ ∆AMC cân tại M
⇒ ∠MAC = ∠MCA (hai góc ở đáy)
Do MA ⊥ DE (gt)
CE ⊥ DE (gt)
⇒ MA // DE
⇒ ∠MAC = ∠ACE (so le trong)
Mà ∠MAC = ∠MCA (cmt)
⇒ ∠MAC = ∠ACE
⇒ ∠ACE = ∠BCA (do ∠MAC = ∠BAC)
Xét hai tam giác vuông:
∆ABC và ∆EAC có:
∠BCA = ∠ACE (cmt)
⇒ ∆ABC ∽ ∆EAC (g-g)
b) Do ∆ABC ∽ ∆EAC (cmt)
⇒ AC/CE = BC/AC
⇒ CE = AC²/BC
= 8²/10
= 6,4 (cm)
Cho tam giác ABC vuông tại A, AC = 8 cm, AB = 6 cm và tam giác HIK vuông tại H, HI = 15 cm, IK = 25 cm
a) Tính độ dài BC, HK
b) Hai tam giác ABC và HIK có đồng dạng vs nhau k? Vì sao?
điểm H,K,I ở chỗ nào vậy
Cho tam giác ABC vuông tại A có AB : AC = 8: 15 , BC= 51 cm . Tính chu vi và diện tích tam giác ABC
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )
Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)
\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)
\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)
Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)
Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB = 8 cm AC = 6 cm độ dài đường trung tuyến AM bằng
A2,5cm
B10cm
C25cm
5cm
cho tam giác abc vuông tại a, có ab = 8 cm, bc = 10 cm. So sánh góc b và góc c
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=6cm\)
Vì AC < AB => ^B < ^C