Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Việt Khoa
Xem chi tiết
Hà Thị Thế
Xem chi tiết
Kyle Thompson
Xem chi tiết
Thoa Trần Thị
Xem chi tiết
tronghieu
Xem chi tiết
hải pham
Xem chi tiết
Nguyễn Thị Thương Hoài
18 tháng 12 2023 lúc 13:05

Gọi ước chung lớn nhất của a và b là d ta có:

\(\left\{{}\begin{matrix}n+1⋮d\\4n^2+8n+5⋮d\end{matrix}\right.\)

⇒ (4n 2 + 4n) + (4n + 4) + 1 ⋮ d

   ⇒4n(n + 1) + 4(n + 1) + 1 ⋮ d

⇒ (n +1).(4n + 4) + 1 ⋮ d

⇒ 1 ⋮ d ⇒ d = 1 

⇒(a;b) = 1 hay a; b là hai số nguyên tố cùng nhau (đpcm)

Citii?
18 tháng 12 2023 lúc 13:11

\(325+376\\ \)

Hà Thị Nhung
Xem chi tiết
Trương Minh Nghĩa
20 tháng 10 2021 lúc 8:46

1)Gọi ƯCLN(2n+1;6n+5)=d

Ta có: 2n+1 chia hết cho d; 6n+5 chia hết cho d

=>3(2n+1) chia hết cho d; 6n+5 chia hết cho d

=>6n+3 chia hết cho d; 6n+5 chia hết cho d

mà 3;5 là 2 số nguyên tố cùng nhau

nên 6n+3 và 6n+5 là 2 số nguyên tố cùng nhau

hay 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau

=>đpcm

Khách vãng lai đã xóa
Nguyễn Minh Quân
20 tháng 10 2021 lúc 9:10

biết ai không nè ?undefined

Khách vãng lai đã xóa
gươm hồ
Xem chi tiết

- Với \(n=0\) không thỏa mãn

- Với \(n=1\) không thỏa mãn

- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)

- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5

Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP 

Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu

Nguyễn Thế Hiệp
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
27 tháng 5 2016 lúc 19:29

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Tích nh mấy bạn trong nhóm VRCT

VICTOR_ Kỷ Băng Hà
27 tháng 5 2016 lúc 19:33

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Tích nha mấy bạn trong nhóm VRCT

Châu Lê Thị Huỳnh Như
27 tháng 5 2016 lúc 19:37

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.