Cho số tự nhiên n bất kì. CMR: (6n + 1) và (8n + 2) là 2 số nguyên tố cùng nhau.
1) CMR:2 số 2n+1 và 6n+5 là 2 SNT cùng nhau mọi n€N
2)chứng tỏ:2STN lẻ liên tiếp bất kì nguyên tố cùng nhau
cho a= n+1, b= 4n^2+8n+5 với n là số tự nhiên. cmr a và b là 2 số nguyên tố cùng nhau
Chứng minh rằng 6n+5 và 8n+6 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
1, Cho n là số tự nhiên khác 0 bất kì. Chứng minh rằng 2n +3 và 8n + 4 là hai số nguyên tố cùng nhau
2, Tìm 2 số a và b biết rằng a + b = 162 và ƯCLN ( a,b) = 18
Chừng tỏ rằng với mọi số tự nhiên n khác o thì :
a) 11n + 1 và 12n +11 là 2 số nguyên tố cùng nhau.
b) 6n + 1 và 8n + 1 là 2 số nguyên tố cùng nhau.
c) 5n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau.
BẠN NÀO THƯƠNG MÌNH THÌ GIÚP MÌNH VỚI !
MIK HỨA SẼ BAN THƯỞNG CHO AI NHANH NHẤT 1 CÁI TICK ! =))
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
CMR với mọi số tự nhiên n thì 4n+2 và 6n+1 nguyên tố cùng nhau
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1