D=\(\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)với 0<a<1 và \(1-a=\sqrt{2}a^2\)
Rút gọn biểu thức:
a)\(\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
b)\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d)\(\left(1+tan^2a\right)\left(1-sin^2a\right)+\left(1+cotan^2a\right)\left(1-cos^2a\right)\)
Gọi a là nghiệm của pt: \(\sqrt{2}x^2+x-1=0\). Không giải pt,tính:
\(A=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
2a^4=(1-a)^2=a^2-2a+1
\(A=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{\sqrt{2}!\left(a-2\right)!+2a^2}\)a> 2 không thể là nghiệm=> a<2
\(A=\frac{2a-3}{\sqrt{2}\left(2-a\right)+2a^2}=\frac{2a-3}{2a^2-\sqrt{2}a+2\sqrt{2}}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a-1+3\right)}\)
\(A=\frac{2a-3}{\sqrt{2}\left(3\right)}\)
a là nghiệm =>\(\sqrt{2}a^2+a-1=0\Rightarrow\sqrt{2}a^2=1-a\\\)\(2a^4=\left(1-a\right)^2=1^2-2a+a^2\)
Thay 2a^4=...vào ==>
Cho a,b > 0. Hãy đơn giản biểu thức :
\(T=\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải
Cố gắng hơn nữa bạn cho mình biết là cái đề này bạn chép từ bộ đề nào để mình lên mạng tìm thử xem sao. Biết đâu cái đề bạn cầm trên tay nó bị lỗi đánh máy thì sao.
\(\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
gọi a là nghiêm dương cua pt \(\sqrt{2}.x^2\)+x-1=0
tính P=\(\frac{2a-3}{\sqrt{2.\left(2a^4-2a+3\right)}+2a^2}\)
các bạn giúp mình nha mình cảm ơn
nghiệm a si đa quá ._.
\(\sqrt{2}x^2+x-1=0\)
\(\Delta=1^2-\left(4\sqrt{2}-1\right)=\sqrt{32}+1\)
\(\Rightarrow x_{1,2}=\frac{-1\pm\sqrt{\sqrt{32}+1}}{2\sqrt{2}}\).....
vì a là nghiệm của pt \(\sqrt{2}x^2+x-1=0\) nên\(\sqrt{2}a^2+a-1=0\)
↔\(\sqrt{2}a^2=1-a\)(đk : 0<a<1)
↔\(2a^4=\left(1-a\right)^2=1-2a+a^2\)↔\(2a^4-2a+3=a^2-4a+4=\left(a-2\right)^2\)(1)
ta có:\(P=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}=\frac{\left(2a-3\right)\left(\sqrt{2\left(2a^4-2a+3\right)}-2a^2\right)}{4a^4-4a+6-4a^4}\)
\(P=-\frac{1}{2}\left(\sqrt{2\left(2a^4-2a+3\right)}-2a^2\right)\)
thay (1) vào P ta được:
\(P=-\frac{1}{2}\left(\sqrt{2}\left|a-2\right|-2a^2\right)=\frac{1}{2}\left(2a^2+\sqrt{2}a-2\sqrt{2}\right)\)
lại có:\(\sqrt{2}a^2+a-1=0\)↔\(2a^2+\sqrt{2a}=\sqrt{2}\)
thay vào p ta được: \(P=\frac{1}{2}\left(\sqrt{2}-2\sqrt{2}\right)=\frac{1}{2}\left(-\sqrt{2}\right)=-\frac{\sqrt{2}}{2}\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\), không giải phương trình tính giá trị của
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\). Không giải phương trình hãy tính giá trị của
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Thay \(\sqrt{2}a^2=1-a\ge\)0 suy ra a <=1 tính được mẫu = \(-\sqrt{2}\left(2a-3\right)\)
cho a,b > 0. Hãy đơn giản biểu thức:
\(T=\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Gọi a là nghiệm dương của phương trình : \(\sqrt{2}x^2+x-1=0\). Không giải phương trình, hãy tính giá trị của biểu thức :
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
ta có :
\(\sqrt{2}a^2+a-1=0\Leftrightarrow\sqrt{2}a^2=1-a\) nên ta có \(a\le1\)
\(\Rightarrow2a^4=a^2-2a+1\)Vậy \(C=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{2a^2+\sqrt{2}\left(2-a\right)}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a+2\right)}\)
\(=\frac{2a-3}{\sqrt{2}\left(1-a-a+2\right)}=\frac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\frac{1}{\sqrt{2}}\)