nghiệm a si đa quá ._.
\(\sqrt{2}x^2+x-1=0\)
\(\Delta=1^2-\left(4\sqrt{2}-1\right)=\sqrt{32}+1\)
\(\Rightarrow x_{1,2}=\frac{-1\pm\sqrt{\sqrt{32}+1}}{2\sqrt{2}}\).....
vì a là nghiệm của pt \(\sqrt{2}x^2+x-1=0\) nên\(\sqrt{2}a^2+a-1=0\)
↔\(\sqrt{2}a^2=1-a\)(đk : 0<a<1)
↔\(2a^4=\left(1-a\right)^2=1-2a+a^2\)↔\(2a^4-2a+3=a^2-4a+4=\left(a-2\right)^2\)(1)
ta có:\(P=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}=\frac{\left(2a-3\right)\left(\sqrt{2\left(2a^4-2a+3\right)}-2a^2\right)}{4a^4-4a+6-4a^4}\)
\(P=-\frac{1}{2}\left(\sqrt{2\left(2a^4-2a+3\right)}-2a^2\right)\)
thay (1) vào P ta được:
\(P=-\frac{1}{2}\left(\sqrt{2}\left|a-2\right|-2a^2\right)=\frac{1}{2}\left(2a^2+\sqrt{2}a-2\sqrt{2}\right)\)
lại có:\(\sqrt{2}a^2+a-1=0\)↔\(2a^2+\sqrt{2a}=\sqrt{2}\)
thay vào p ta được: \(P=\frac{1}{2}\left(\sqrt{2}-2\sqrt{2}\right)=\frac{1}{2}\left(-\sqrt{2}\right)=-\frac{\sqrt{2}}{2}\)