Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê thị tiều thư

1) ghpt \(\left\{{}\begin{matrix}\sqrt[3]{x}+\sqrt[3]{y}=1\\\sqrt[3]{x-1}+\sqrt[3]{y+1}=1\end{matrix}\right.\)

2) cho a,b \(\ge\)0 thỏa mãn \(a^2+b^2=1\)

tìm Min lẫn Max của P= \(\sqrt{2a+1}+\sqrt{2b+1}\)

michelle holder
17 tháng 3 2017 lúc 22:00

1) hệ <=> \(\left\{{}\begin{matrix}x+y+3\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)=1\\x+y+3\sqrt[3]{\left(x-1\right)\left(y+1\right)}\left(\sqrt[3]{x-1}+\sqrt[3]{y+1}\right)=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y+3\sqrt[3]{xy}=1\\x+y+3\sqrt[3]{\left(x-1\right)\left(y+1\right)}=1\end{matrix}\right.\)

trừ vế theo vế => \(3\sqrt[3]{xy}-3\sqrt[3]{\left(x-1\right)\left(y+1\right)}=0\)

<=> xy=(x-1)(y-1) <=> x-y=1=> \(\left\{{}\begin{matrix}\sqrt[3]{x}+\sqrt[3]{y}=1\\x-y=1\end{matrix}\right.\)

đặt \(\sqrt[3]{x}=a;\sqrt[3]{y}=b\)

hpt <=> \(\left\{{}\begin{matrix}a+b=1\\a^3-b^3=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}b=1-a\\2a^3-3a^2+3a-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}b=1-a\\\left(a-1\right)\left(2a^2-a+2\right)=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

p/s: cách làm khá dài ,có ai có cách khác thì làm luôn cho mik exp :v )

michelle holder
17 tháng 3 2017 lúc 22:17

câu 2) xét \(p^2\) nhé ( để mai làm đã @@ )


Các câu hỏi tương tự
michelle holder
Xem chi tiết
lê thị tiều thư
Xem chi tiết
michelle holder
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Như
Xem chi tiết
Neet
Xem chi tiết
Ngọc Hiền
Xem chi tiết
michelle holder
Xem chi tiết
Như
Xem chi tiết