1)cho a,b,c>0 CMR \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2)tìm x,y nguyên dương thỏa \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4xy+9\)
3) ghpt a) \(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\)
Xí câu BĐT:
ta cần chứng minh \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
Áp dụng BĐT cauchy:
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)
tương tự ta có:\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ac\ge2c^2\)
cả 2 vế các BĐT đều dương,cộng vế với vế ta có:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
mà a2+b2+c2\(\ge ab+bc+ca\) ( chứng minh đầy đủ nhá)
do đó \(S=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-ab+bc+ca=ab+bc+ca\)
suy ra BĐT ban đầu đúng
dấu = xảy ra khi và chỉ khi a=b=c.
P/s: cách khác :Áp dụng BĐT cauchy-schwarz:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
\(S\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Câu hệ này =))
b, Từ hệ đã cho ta thấy x,y > 0
Trừ vế cho vế pt (1) và (2) của hệ ta được:
\(x^4-y^4=4y-4x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=4\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)\left(x^2+y^2\right)+4\right]=0\)
\(\Leftrightarrow x-y=0\) ( Vì \(\left(x+y\right)\left(x^2+y^2\right)+4>0\) với x,y > 0)
\(\Leftrightarrow x=y\)
Với x = y thay vào pt đầu của hệ ta được:
\(x^4-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+2x+3>0\) )
\(\Leftrightarrow x=1\)
Với x=1 suy ra y=1
Vậy hệ đã cho có nghiệm duy nhất (x;y) = (1;1)
2, Phương trình đã cho tương đương với:
\(x^2y^2+x^2+y^2+1+2\left(x-y\right)\left(1-xy\right)-4xy=9\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(xy-1\right)^2=9\)
\(\Leftrightarrow\left(x-y+xy-1\right)^2=9\)
\(\Leftrightarrow\left[\left(x-1\right)\left(y+1\right)\right]^2=9\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=3\) ( Vì x,y nguyên dương )
Vì \(x;y\in Z^+\) nên x-1; y+1 nguyên và không âm.
Suy ra x-1 ; y+1 là ước nguyên dương của 3
Xét 2 TH ta tìm được các giá trị x;y cần tìm
\(\sqrt{\dfrac{ }{ }\dfrac{ }{ }_{ }^{ }\uparrow}\)
làm nốt cho đẹp :v
\(\left\{{}\begin{matrix}x^2+y^2+3=4x\left(1\right)\\x^3+12x+y^3=6x^2+9\left(2\right)\end{matrix}\right.\)
từ Pt (1) ta có: 12x=3x2+3y2+9.thế vào Pt (2):
\(x^3+3x^2+3y^2+9+y^3=6x^2+9\)
\(\Leftrightarrow x^3-3x^2+3y^2+y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-3x+3y\right)=0\)
* xét x+y=0 <=> y=-x.thế vào Pt (1):2x2-4x+3=0 <=> pt vô nghiệm
* xét x2-xy+y2-3x+3y=0.
từ Pt(1):\(x^2+y^2=4x-3\).thế vào Pt trên:
4x-3-xy-3x+3y=0\(\Leftrightarrow x-3-xy+3y=0\)
\(\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
# : x=3 .thế vào PT (1),tìm được y=0
# : y=1.thế vào PT(1),tìm được x=2
vậy các cặp (x,y) thỏa mãn HPT là (3;0);(2;1)
P/s : you shuold tham khảo thêm phương pháp UCT cho HPT