\(\left\{{}\begin{matrix}x+y^2+z^3=3\left(1\right)\\\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\left(2\right)\end{matrix}\right.\)
Do \(x,y,z\) là các số dương nên ta áp dụng BĐT AM-GM cho \(pt\left(1\right)\):
\(y^2+1\ge2\sqrt{y^2}=2y\)
\(z^3+1+1\geq 3\sqrt[3]{z^3}=3z\)
\(\Rightarrow x+y^2+z^3+3\ge x+2y+3z\)
\(\Rightarrow VT+3\le x+2y+3z\Rightarrow x+2y+3z\le6\)
Xét \(pt\left(2\right)\) lại có: \(VT=\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=\dfrac{1}{x}+\dfrac{2^2}{2y}+\dfrac{3^2}{3z}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{x}+\dfrac{2^2}{2y}+\dfrac{3^2}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}=\dfrac{36}{6}=6=VP\left(x+2y+3z\le6\right)\)
Đẳng thức xảy ra khi \(x=y=z\)
Thay \(x=y=z\) vào \(pt\left(1\right)\) ta có:
\(x+x^2+x^3=3\Leftrightarrow x=1\Rightarrow x=y=z=1\)