Gọi a là nghiệm của pt: \(\sqrt{2}x^2+x-1=0\). Không giải pt,tính:
\(A=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Cho a,b > 0. Hãy đơn giản biểu thức :
\(T=\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{\left(2a+b-\sqrt{a^2+2ab}\right)}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Câu 1: Cho A= \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)B=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{35}}\)
Chứng minh A<B
Câu 2: Tính A=\(\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}+\sqrt[3]{\frac{X^3-3X+\left(X^2-1\right)\sqrt{X^2-4}}{2}}\)Với x=\(\sqrt[3]{2017}\)
Câu 3: Cho hai số thực x và y thoã mãn \(\left(\sqrt{X^2+1}+X\right)\left(\sqrt{Y^2+1}+Y\right)=1\)Tính x+y
Câu 4: Trục căn thức mẫu số A= \(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
Câu 5 : Gọi a là nghiệm nguyên dương của Phương trình \(\sqrt{2}X^2+X-1=0\)Không giải pt tính
C=\(\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{a^2-2a+1}}{\sqrt{1-a^2}-\sqrt{a^2-2a+1}}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)ĐK:0< a< 1\)Dk 0
B1:Tìm a để biểu thức sau có nghĩa
1.\(\sqrt{a^2+2a-3}\)
2.\(\sqrt{\dfrac{\left(a-1\right)^3}{a^2}}\)
3.\(\sqrt{\dfrac{a^2+1}{2a}}\)
4.\(\sqrt{\dfrac{a-1}{2a+1}}\)
cho a,b,c >0 hãy đơn giản bt :
A=\(\frac{\sqrt{a^3+2a^2b}+\sqrt{a^4+2a^3b}-\sqrt{a^3}-a^2b}{\sqrt{2a+b-\sqrt{a^2+2ab}}.\left(\sqrt[3]{a^2}-\sqrt[6]{a^5}+a\right)}\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\), không giải phương trình tính giá trị của
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\) . Không giải phương trình, hãy tính giá trị biểu thức: \(C=\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\). Không giải phương trình hãy tính giá trị của
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)