Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Thị Mỹ Duyên
Xem chi tiết
Ha Hoang Vu Nhat
27 tháng 4 2017 lúc 20:41

Ta có: \(\left(a-1\right)^2\ge0\)

<=> \(a^2-2a+1\ge0\)

<=> \(a^2+1\ge2a\)

=> \(\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

Tương tự ta cm được: \(\dfrac{b}{b^2+1}\le\dfrac{1}{2}\) ; \(\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

=> P=\(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

dấu bằng sảy ra khi a=b=c=1

vậy PMAX = \(\dfrac{3}{2}\) khi a=b=c=1

Thảo Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 19:03

Câu 1: 

a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+15}{x-9}\cdot\dfrac{\sqrt{x}+3}{3}\)

\(=\dfrac{-3\sqrt{x}+15}{\sqrt{x}-3}\cdot\dfrac{1}{3}=\dfrac{-\sqrt{x}+5}{\sqrt{x}-3}\)

b: Thay \(x=11-6\sqrt{2}\) vào P, ta được:

\(P=\dfrac{-\left(3-\sqrt{2}\right)+5}{3-\sqrt{2}-3}=\dfrac{-3+\sqrt{2}+5}{-\sqrt{2}}\)

\(=\dfrac{2-\sqrt{2}}{-\sqrt{2}}=-\sqrt{2}+1\)

 

Bùi Thị Hà Giang
Xem chi tiết
Nguyễn Ngọc Trâm
Xem chi tiết
Lê Thị Khánh Huyền
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Quốc Uchiha
Xem chi tiết
Trịnh Thị Thúy Vân
9 tháng 9 2018 lúc 17:22

Với a, b, c là các số nguyên dương

=> a + b > 0 ; b + c > 0 ; c + a > 0

Áp dụng bất đẳng thức Cauchy cho hai số a + b và c không âm, ta có:

\(\left(a+b\right)+c\ge2\sqrt[]{\left(a+b\right)c}\)

\(\Rightarrow1\ge\dfrac{2\sqrt[]{\left(a+b\right)c}}{a+b+c}\)

\(\Rightarrow1\ge\dfrac{2\sqrt{c}\sqrt[]{\left(a+b\right)c}}{\sqrt[]{c}\left(a+b+c\right)}\)

\(\Rightarrow1\ge\dfrac{2c\sqrt[]{a+b}}{\sqrt[]{c}\left(a+b+c\right)}\)

\(\Rightarrow\sqrt[]{c}\left(a+b+c\right)\ge2c\sqrt[]{a+b}\)

\(\Rightarrow\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\) (1)

Chứng minh tương tự \(\Rightarrow\sqrt[]{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\) (2) ;\(\sqrt[]{\dfrac{b}{a+c}}\ge\dfrac{2b}{a+b+c}\) (3)

Cộng hai vế của (1), (2), (3), ta được:

\(\sqrt[]{\dfrac{a}{b+c}}+\sqrt[]{\dfrac{b}{a+c}}+\sqrt[]{\dfrac{c}{a+b}}\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=2\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\a+c=b\\b+c=a\end{matrix}\right.\)

Kết hợp với điều kiện a, b, c là các số nguyên dương => Không thể xảy ra dấu " = "

=> ĐPCM

Quốc Uchiha
9 tháng 9 2018 lúc 16:19

a,b,c >0 nua nhe

vu thi thanh hien
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết