Áp dụng bất đẳng thức Cosi với các số dương a,b,c ta có:
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\) (1)
CMTT, ta có: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) (2)
\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\) (3)
Từ (1),(2) và (3) suy ra:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{2\left(a+b+c\right)}{4}\ge a+b+c\)
\(\Leftrightarrow\)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\) \(\ge\dfrac{a+b+c}{2}\) = \(\dfrac{6}{2}=3\)
\(\Rightarrow\) A\(\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(a=b=c=2\)
Vậy GTNN của A = 3 \(\Leftrightarrow a=b=c=2\)