Cho x,y, z la cac so duong thoa man dieu kien x+y+z=a
tim GTNN : Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
cho a, b, c la cac so thuc duong thoa man a + b + c =abc chung minh rang :
\(\frac{1}{a^2\left(1+bc\right)}+\frac{1}{b^2\left(1+ac\right)}+\frac{1}{c^2\left(1+ab\right)}\le\frac{1}{4}\)
Tim cac so nguyen duong a, b, c thoa man: \(\left\{{}\begin{matrix}\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\)
cho a b c la cac so thuc ko am thoa man a+b+c=3. tim GTLN cua K=\(\sqrt{12a+\left(b-c\right)^2}+\sqrt{12b+\left(a-c\right)^2}+\sqrt{12c+\left(a-b\right)^2}\)
Cho a,b,c,d>0.Tìm GTNN của
S=\(\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)
Cho a,b,c \(\in\) N. Chứng minh: \(\sqrt{a\left(b+1\right)}+\sqrt{b\left(c+1\right)}+\sqrt{c\left(a+1\right)}\le\dfrac{3}{2}.\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
Cho a, b, c là các số dương thỏa mãn a + b + c = 1. Tìm Min:
\(A=\dfrac{\left(1+a\right)\cdot\left(1+b\right)\cdot\left(1+c\right)}{\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)}\)
cho a, b, c thoa man ab+bc+ca =1
rut gon ve dang ko chua can cua A= \(\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
please
Cho a,b,c >0 thỏa mãn: ab+ bc+ca=1. Rút gọn biểu thức:
A= \(a\sqrt{\dfrac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\dfrac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\dfrac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}\)