Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Ngọc Phương Thảo
Xem chi tiết
Vũ Nhược Ann
Xem chi tiết
Vũ Nhược Ann
7 tháng 2 2020 lúc 11:01

a, 8/x-8 + 11/x-11 = 9/x-9  + 10/ x-10

b, x/x-3 - x/x-5 = x/x-4 - x/x-6

c, 4/x^2-3x+2  - 3/2x^2-6x+1   +1 = 0

d, 1/x-1 + 2/ x-2  + 3/x-3  = 6/x-6

e, 2/2x+1 - 3/2x-1 = 4/4x^2-1

f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3

g, 1/x-1 + 2x^2 -5/x^3 -1  = 4/ x^2 +x+1

Khách vãng lai đã xóa
Dan Lin
Xem chi tiết
 Mashiro Shiina
30 tháng 1 2018 lúc 13:34

\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)

\(VP=2013+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)

\(VP=1+\left(\dfrac{2012}{2}+1\right)+....+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{1}{2013}+1\right)\)

\(VP=\dfrac{2014}{2014}+\dfrac{2014}{2}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}\)

\(VP=2014\left(\dfrac{1}{2}+..+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)

\(VP-VT=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)-x\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)=0\)

\(\Rightarrow\left(2014-x\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)=0\)

\(\Rightarrow x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\ne0\right)\)

nguyễn thành tâm
Xem chi tiết
Iruky Hita
Xem chi tiết
NTB OFFICIAL
Xem chi tiết
Akai Haruma
4 tháng 7 2018 lúc 15:37

1)

ĐK: \(x,y\neq 0\); \(x+y\neq 0\)

\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)

\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)

2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)

\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)

\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)

Akai Haruma
4 tháng 7 2018 lúc 15:46

3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)

\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)

4) ĐK: \(x\neq \frac{\pm 1}{3}\)

\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)

\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)

\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)

5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)

\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)

\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{3}{(x+1)^2}\)

Akai Haruma
4 tháng 7 2018 lúc 15:57

6) ĐK: \(x\neq \pm 3\); 0

\(\left(\frac{3}{x-3}+\frac{2x}{x^2-9}+\frac{x}{x+3}\right): \frac{2x}{x+3}\)

\(=\left(\frac{3(x+3)}{(x-3)(x+3)}+\frac{2x}{(x-3)(x+3)}+\frac{x(x-3)}{(x+3)(x-3)}\right). \frac{x+3}{2x}\)

\(=\frac{3(x+3)+2x+x(x-3)}{(x-3)(x+3)}.\frac{x+3}{2x}\)

\(\frac{(x^2+2x+9)(x+3)}{(x-3)(x+3).2x}=\frac{x^2+2x+9}{2x(x-3)}\)

7) ĐK: \(x\neq 2; \pm 3;0\)

\(\left(\frac{3}{x^2-9}+\frac{1}{x^2+3x}-\frac{1}{x^2-3x}\right): \frac{x-2}{2x^2+6x}\)

\(=\left(\frac{3x}{x(x-3)(x+3)}+\frac{x-3}{x(x-3)(x+3)}-\frac{x+3}{(x+3)x(x-3)}\right).\frac{2x(x+3)}{x-2}\)

\(=\frac{3x+x-3-(x+3)}{x(x-3)(x+3)}.\frac{2x(x+3)}{x-2}\)

\(=\frac{3x-6}{x(x-3)(x+3)}.\frac{2x(x+3)}{x-2}=\frac{3(x-2).2x(x+3)}{x(x-3)(x+3)(x-2)}=\frac{6}{x-3}\)

ytr
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 11 2019 lúc 12:21

ĐKXĐ; ...

a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)

\(P_{min}=5\) khi \(x=-2\)

b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)

\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)

\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)

\(=1-\left(x-1\right)^2\le1\)

\(Q_{max}=1\) khi \(x=1\)

Khách vãng lai đã xóa
nguyễn ngọc quỳnh anh
Xem chi tiết
NGUYỄN THỊ THU HOÀI
Xem chi tiết